Les modèles mathématiques et plus spécifiquement les modèles basés sur l'équation de réaction-diffusion ont été utilisés largement dans la littérature pour modéliser la croissance des gliomes cérébraux et des tumeurs en général. De plus la grande littérature de recherche qui concentre sur les expériences biologiques et microscopiques, récemment les modèles ont commencé intégrer l'imagerie médicale dans ses formulations. Incluant la géométrie du cerveau et celle de la tumeur, les structures des différentes tissues et la direction de diffusion, ils ont montré qu'il est possible de simuler la croissance de la tumeur comme c'est observé dans les images médicales. Bien que des modèles génériques ont été proposés, les méthodes pour adapter ces modèles aux images d'un patient reste un domaine inexploré. Dans cette thèse nous nous adressons au problème de 'personnalisation de modèle mathématique de la croissance de tumeurs'. Nous nous focalisons sur les modèles de réaction-diffusion et leurs applications sur la croissance des gliomes cérébrales. Dans la première étape, nous proposons une méthode pour l'identification automatique des paramètres 'patient-spécifiques' du modèle à partir d'une série d'images. En observant la divergence entre la visualisation des gliomes dans les IRMs et les modèles réaction-diffusion, nous déduisons une nouvelle formulation pour expliquer l'évolution de la délinéation de la tumeur. Ce modèle 'Eikonal anistropique modifié' est utilisé plus tard pour l'estimation des paramètres à partir des images. Nous avons théoriquement analysé la méthode proposée à l'aide d'un base donne synthétique et nous avons montré la capacité de la méthode et aussi sa limitation. En plus, les résultats préliminaires, sur les cas réels montrent des potentiels prometteurs de la méthode d'estimation des paramètres et du modèle de réaction-diffusion pour la quantification de la croissance de tumeur et aussi pour la prédiction de l'évolution futur de la tumeur. En suivant la personnalisation, nous nous concentrons sur les applications cliniques des modèles 'patient-spécifiques'. Spécifiquement, nous nous attaquons au problème de la visualisation limitée d'infiltration de gliome dans l'IRM. En effet, les images ne montrent qu'une partie de la tumeur et masquent l'infiltration basse-densité. Cette information absente est cruciale pour la radiothérapie et aussi pour d'autre type de traitements. Dans ce travail, nous proposons pour ce problème une formulation basée sur les modèles 'patient-spécifiques'. Dans l'analyse de cette méthode nous montrons également les bénéfices potentiels pour la planification de la radiothérapie. La dernière étape de cette thèse se concentre sur les méthodes numériques de l'équation 'Eikonal anisotropique'. Ce type d'équation est utilisé dans beaucoup de problèmes différents tel que la modélisation, le traitement d'image, la vision par ordinateur et l'optique géométrique. Ici nous proposons une méthode numérique rapide et efficace pour résoudre l'équation Eikonal anisotropique. En la comparant avec une autre méthode état-de-l'art nous démontrons les avantages de la technique proposée.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00633697 |
Date | 17 February 2009 |
Creators | Konukoglu, Ender |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds