De nos jours, les objets virtuels sont devenus omniprésents. On les trouve dans de nombreux domaines comme le divertissement (cinéma, jeux vidéo, etc.), la conception assistée par ordinateur ou encore la réalité virtuelle. Nous nous intéressons en particulier à la modélisation d'objets 3D dans le domaine de la création artistique. Ici, la création d'images riches nécessite de faire appel à des modèles très détaillés et donc extrêmement complexes. Les surfaces de subdivision, traditionnellement utilisées dans ces domaines, voient leur complexité croître rapidement lorsqu'on ajoute des détails, et la gestion de la connectivité du maillage de contrôle devient trop contraignante. Une approche standard pour gérer la complexité de tels modèles est d'utiliser des représentations différentes pour la forme générale de la surface et les détails. Cependant, ces détails sont représentés par des cartes matricielles qui ne possèdent pas la plupart des avantages des représentations vectorielles, et cela complexifie certaines tâches, comme par exemple l'animation. Dans cette thèse, nous proposons deux nouvelles représentations vectorielles, la première pour les surfaces de base, la deuxième pour les détails. Nous utilisons pour cette dernière une représentation vectorielle appelée images de diffusion permettant de créer des variations lisses à l'aide d'un ensemble réduit de contraintes. Cela nous permet de représenter aussi bien la géométrie que la couleur ou d'autres paramètres nécessaires au rendu de façon purement vectoriel, en conservant des contrôles de haut niveau. Notre première contribution est une représentation de surfaces, baptisée LS3, issue de la combinaison entre surfaces de subdivision et -point set surfaces. Cette approche réduit notablement les artefacts des surfaces de subdivision aux alentours de sommets dits extraordinaires, qui sont connus pour poser problème. Nous présentons une analyse numérique des propriétés de ces surfaces, qui tend à montrer que du point de vue de la continuité elles se comportent au moins aussi bien que les schémas de subdivision linéaires traditionnels. Notre deuxième contribution est un solveur pour les images de diffusion dont le principal avantage est de produire en sortie une autre représentation vectorielle légère et très rapide à évaluer. Nous illustrons la force de note solveur sur de nombreux exemples difficiles ou impossibles à réaliser avec les méthodes précédentes. Pour conclure, nous montrons comment combiner nos deux contributions pour obtenir une représentation de surface entièrement vectorielle capable de représenter des détails sans avoir à manipuler la connectivité d'un maillage.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00767367 |
Date | 12 December 2012 |
Creators | Boyé, Simon |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0074 seconds