La corrosion des armatures de renforcement des structures en béton représente un enjeu socio-économique majeur. Sa détection et le suivi de son évolution constituent un défi pour la recherche appliquée. Les techniques standards non destructives de détection de corrosion mettent en œuvre des procédés indirects tels la mesure d’impédance, de potentiels, ou par ultrasons. Leurs capacités d’auscultation sont limitées dans l’espace (notamment en profondeur), leur coût reste élevé dans un contexte de maintenance périodique et elles conduisent à des paramètres d’interprétation complexe. Des progrès sont nécessaires dans la détection et l’analyse fiable de la progression des processus de corrosion. Dans ce travail, nous présentons une nouvelle méthode pour détecter la corrosion et le suivi de son évolution, basée sur l’observation directe des changements intervenant à l’interface fer-béton par Capteur à Fibre Optique (CFO). L'attaque par corrosion de la surface de l'armature dépend de plusieurs paramètres électrochimiques (température, pH, carbonatation, présence de chlorures, contamination biologique, etc.). Deux comportements mécaniques à l'interface fer-béton sont distingués. Dans le premier cas (carbonatation), le produit d'oxydation du métal reste à l'interface et augmente la pression interne, pouvant conduire à la fissuration de la couche de béton extérieure. Dans le second cas (piqures), les ions métalliques sont évacués hors de la structure avec comme conséquence une réduction de section des barres d'armature (affaiblissement du renforcement). Un CFO innovant est proposé dans le but de localiser et quantifier les deux types de corrosion précités. Le principe consiste à observer l’impact direct de la corrosion sur l’état de déformation d’une fibre optique préalablement précontrainte par construction. Deux procédés métrologiques sont étudiés : Bragg et réflectométrie fréquentielle (Optical Frequency-Domain Reflectometry - OFDR). Des tests de corrosion accélérée montrent la faisabilité du procédé. Une procédure de fabrication simplifiée et à coût optimisé est proposée pour la surveillance in situ et répartie des structures de génie civil, dans une perspective future de maintenance conditionnée. / Corrosion of reinforced bars (rebars) in concrete structures remains a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. Usual non-destructive corrosion detection methods involve impedance, potential or ultra-sonic indirect measurements of complex interpretation. Besides, they are restricted to near-surface examinations and the maintenance cost is still high (scheduled maintenance). Many efforts remain to be done to survey the onset and progression of corrosion processes in a reliable way. In this work, we present a new methodology to detect the onset of corrosion and to monitor its evolution, based on the direct observation of rebar–concrete interface changes by the use of an Optical Fiber Sensor (OFS). The corrosion attack over rebar surface depends on several physical, chemical and electrochemical parameters (temperature, pH, presence of chlorides/CO2, biological contamination, etc.). Two types of mechanical behavior and described. In the first case (carbonation), metal oxidation products stay at the interface and increase internal pressure, potentially leading to a crack of the external concrete layer. In the second case (pitting), metal ions are evacuated out of the structure, leading to a reduction of the rebar section (structural weakness). An innovative sensor design is proposed with the purpose of localizing and quantifying the amount of both corrosion types. The basic principle consists in measuring the impact of corrosion over the state of strain of a prestressed optical fiber. Two metrological techniques are used: Fiber Bragg Grating (FBG) and Optical Frequency-Domain Reflectometry (OFDR). Accelerated corrosion tests were performed in electrolytic solutions for both kinds of corrosion types (pitting and carbonation) and provide a proof-of-concept for the technique. A low-cost, simplified manufacturing procedure is proposed with the aim to provide distributed and in situ Structural Health Monitoring (SHM), suitable for future Condition-Based Maintenance (CBM) of civil engineering concrete structures.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAI042 |
Date | 19 September 2016 |
Creators | Ali Alvarez, Shamyr Sadat |
Contributors | Grenoble Alpes, Nogueira, Ricardo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds