La qualité du transport électronique est l'une des clés permettant de soutenir la progression des performances pour les futures générations de composants. De très nombreux facteurs, comme le choix de l'isolant et du métal de grille, le matériau de canal ou la présence de contraintes mécaniques, affectent de façon négative ou positive ces propriétés de transport. L'épaisseur du canal, qui atteint des dimensions nanométriques joue également un rôle : interactions avec les interfaces, fluctuations d'épaisseurs, effets de couplage électrostatique ou quantique entre ces interfaces. Il est probable que des mécanismes d'interaction associés à la proximité des zones surdopées de source et de drain puissent également intervenir. A ces dimensions, on s'attend à observer des phénomènes de transport hors d'équilibre, voire balistique, qui peuvent remettre en question la validité des paramètres utilisés pour caractériser le transport. Donc avec l'avancement de la technologie, il devient nécessaire de faire évoluer les modèles de transport et les paramètres afin de mieux expliquer le fonctionnement du MOSFET. Cette thèse se concentre sur la compréhension des modèles de transport existants et des méthodes d'extraction pour les noeuds technologiques actuels et futures. Les modèles de transport et les méthodes d'extraction de paramètres en régime linéaire et de saturation ont été explorés au cours de cette thèse. L'impact de la résistance série, qui est une fonction de la tension de grille, dans les MOSFET avancés est pris en compte et une nouvelle méthode d'extraction améliorée a été développée dans le régime linéaire. Des mesures à basse température ont été utilisées en régime linéaire pour l'extraction des mécanismes de diffusion en utilisant le modèle de mobilité. Une nouvelle méthode de correction pour le courant de drain dans le régime de saturation pour les MOSFET canal court est développée en utilisant les mesures à basse température. Cela permet de corriger du DIBL ainsi que des effets de " self heating ". Le modèle de saturation de vitesse et la méthode d'extraction associée sont explorés dans le régime de saturation et sont étudiés en fonction de la température et de la longueur de canal. Les modèles balistique et quasi-balistique avec le concept de la " kT layer " en régime de saturation sont également étudiés pour les noeuds sub 32 nm. Mesurer la magnétorésistance offre des perspectives prometteuses pour les dispositifs à canal court et permettant d'extraire directement la mobilité, sans la nécessité de la connaissance des dimensions du canal. Un modèle analytique pour la magnétorésistance est développé dans le cadre des noeuds technologiques sub 32 nm pour les modèles de transport balistique et quasi-balistique. La mesure de la magnétorésistance est explorée dans la région de saturation pour la première fois jusqu'à 50 nm sur les MOSFET " bulk " afin de comprendre l'applicabilité de cette méthode d'extraction à ce régime. Enfin les dispositifs bulk+ FDSON, FinFET, et GAA sont caractérisés en fonction de la température et les mécanismes de transport dans ces nouveaux dispositifs sont étudiés jusqu'à 35 nm (FinFET). En outre, le paramètre de champ effectif η est extrait pour les dispositifs sSOI. On trouve qu'il est différent du cas " bulk " comme c'était le cas pour les résultats obtenues sur bulk contraint et FDSOI. Cela est interprété par la rugosité de surface et la diffusion des phonons en raison de l'occupation préférentielle de la sous la bande fondamentale dans ces dispositifs avancés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00720613 |
Date | 29 November 2011 |
Creators | Subramanian, Narasimhamoorthy |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds