Cette thèse traite de l'approximation des équations différentielles stochastiques rétrogrades (EDSR) par projections et simulations de Monte-Carlo. Les applications envisagées ont rapport aux mathématiques financières. Dans une première partie, nous proposons un premier algorithme dont nous étudions la convergence en fonction de ses paramètres. Ayant montré les limitations de ce premier algorithme, nous étudions dans une deuxième partie un second algorithme pour lequel nous établissons de nouvelles bornes d'erreurs. Celles-ci nous permettent d'obtenir une précision arbitrairement petite dans l'approximation des solutions d'EDSR. Nous étendons dans une troisième partie nos résultats au cas des EDSR rétrogrades qui permettent de modéliser le problème de réplication d'options américaines. Enfin, dans une dernière partie, nous expérimentons numériquement les algorithmes analysés précédemment. En conclusion, nous donnons des pistes pour étendre ce travail.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00001396 |
Date | 13 June 2005 |
Creators | Lemor, Jean-Philippe |
Publisher | Ecole Polytechnique X |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds