La compréhension et la prévision de l'évolution des fluides géophysiques sont d'une importance capitale et constituent un domaine de recherche scientifique aux enjeux conséquents. Une bonne prévision est basée sur la prise en compte de toutes les informations disponibles sur le système considéré. Ces informations incluent les modèles, les observations et les connaissances a priori. L'assimilation de données permet de les combiner de façon optimale pour déterminer les entrées du modèle. Les dernières décennies ont vu croître en densité et en qualité la couverture satellitaire produisant, entre autres, des séquences d'images montrant l'évolution dynamique de certains phénomènes géophysiques tels que les dépressions et les fronts. Ces séquences d'images sont jusqu'à présent sous-utilisées en assimilation de données. Cette thèse propose une extension de l'assimilation variationnelle de données aux observations de type séquence d'images. Après avoir présenté les images, leur utilisation actuelle et ses limites, nous introduisons les notions de niveau d'interprétation, d'espaces et d'opérateur image. Ces notions sont utilisées pour formuler l'assimilation directe de séquences d'images. Nous proposons également une nouvelle approche de régularisation par diffusion généralisée pour les problèmes inverses. Les résultats préliminaires en traitement d'images et en assimilation directe de séquence d'images montrent une méthode prometteuse qui résout la plupart des problèmes rencontrés avec les approches classiques de régularisation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00539626 |
Date | 25 October 2010 |
Creators | Souopgui, Innocent |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds