Return to search

Mécanismes de l'instabilité des sites fragiles communs / Mechanisms of common fragile sites instability

Les sites fragiles communs (SFC) sont des loci instables en cas de stress réplicatif et des lieux préférentiels de réarrangements dans les tumeurs. Les SFC sont associés aux plus grands gènes du génome et il a été proposé que la transcription de ces gènes soit à l'origine de cassures de l'ADN. Cependant, de nombreux grands gènes transcrits ne sont pas fragiles. Un second modèle, celui de notre laboratoire, associe la fragilité des SFC à un programme de réplication particulier, combinant pauvreté en événements d'initiation et réplication tardive. Il serait alors possible que la transcription soit liée à leur programme de réplication, ce qui conduirait à la fragilité. Pour mieux comprendre ces relations, j'ai modifié la transcription de deux grands gènes et analysé les conséquences sur leur réplication et leur fragilité. Ces manipulations génétiques sont réalisées dans le modèle aviaire DT40, qui permet la modification ciblée d'ADN par recombinaison homologue avec une grande efficacité. De façon surprenante, j'ai observé que la fragilité d'un grand gène est diminuée aussi bien en abolissant sa transcription qu'en l'augmentant. J'ai étudié la densité en événements d'initiation par peignage moléculaire au locus et le programme temporel de réplication dans des clones présentant des niveaux différents de transcription. J'ai ainsi pu montrer que la surexpression massive de deux grands gènes avance le programme temporel de la réplication, les préservant de la fragilité. Au cours de ma thèse, j'ai donc montré que la transcription exerce des effets antagonistes sur la stabilité du génome, bénéfiques ou délétères, selon le niveau d'expression des grands gènes associés aux SFC. / Common Fragile Sites (CFSs) are loci displaying instability upon replicative stress, which localization correlates with chromosomal rearrangements in tumours. CFSs are associated with the largest genes of the genome and it has been proposed that their transcription leads to DNA breaks. However, many transcribed large genes are not fragile. Our laboratory proposed an alternative model in which CFS instability results from a specific replication program, combining late replication with paucity in initiation events. To reconcile the two models, we hypothesized that transcription impacts the replication programs. In order to characterize those potential relationships, I manipulated the transcription of two large genes associated with CFSs and determined the consequences of these manipulations on replication and fragility. I used chicken DT40 cells to perform these analyses because this cellular model allows efficient engineering of specific DNA sequences by homologous recombination. Surprisingly, I observed that increasing or suppressing transcription of large gene both lead to a decrease fragility. I then analyzed clones displaying variable transcription levels. I determined the distribution and density of initiation event, using molecular combing at two loci, as well as the profiles of replication timing along the genes. I showed that a massive overexpression of two large genes led to an earlier replication timing. Overall, my results highlight the opposite effects of transcription on genome stability, which range from beneficial to deleterious depending on the expression level of large genes associated with CFSs.

Identiferoai:union.ndltd.org:theses.fr/2016PA066063
Date25 March 2016
CreatorsBlin, Marion
ContributorsParis 6, Debatisse, Michelle, Le Tallec, Benoît
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds