Les pannes sont la règle et non l'exception dans les réseaux de capteurs sans fil. Un nœud capteur est fragile et il peut échouer en raison de l'épuisement de la batterie ou de la destruction par un événement externe. En outre, le nœud peut capter et transmettre des valeurs incorrectes en raison de l'influence de l'environnement sur son fonctionnement. Les liens sont également vulnérables et leur panne peut provoquer un partitionnement du réseau et un changement dans la topologie du réseau, ce qui conduit à une perte ou à un retard des données. Dans le cas où les nœuds sont portés par des objets mobiles, ils peuvent être mis hors de portée de la communication. Les réseaux de capteurs sont également sujets à des attaques malveillantes, telles que le déni de service, l'injection de paquets défectueux, entraînant un comportement inattendu du système et ainsi de suite. En plus de ces défaillances prédéfinies (c'est-à-dire avec des types et symptômes connus), les réseaux de capteurs présentent aussi des défaillances silencieuses qui ne sont pas connues à l'avance, et qui sont très liées au système. En revanche, les applications de RCSF, en particulier les applications de sécurité critiques, telles que la détection d'incendie ou les systèmes d'alarme, nécessitent un fonctionnement continu et fiable du système. Cependant, la garantie d'un fonctionnement correct d'un système pendant l'exécution est une tâche difficile. Cela est dû aux nombreux types de pannes que l'on peut rencontrer dans un tel système vulnérable et non fiable. Une approche holistique de la gestion des fautes qui aborde tous les types de fautes n'existe pas. En effet, les travaux existants se focalisent sur certains états d'incohérence du système. La raison en est simple : la consommation d'énergie augmente en fonction du nombre d'éléments à surveiller, de la quantité d'informations à collecter et parfois à échanger. Dans cette thèse, nous proposons un "Framework " global pour la gestion des fautes dans un réseau de capteurs. Ce framework, appelé " IFTF ", fournit une vision complète de l'état du système avec la possibilité de diagnostiquer des phénomènes anormaux. IFTF détecte les anomalies au niveau des données, diagnostique les défaillances de réseau, détecte les défaillances d'applications, et identifie les zones affectées du réseau. Ces objectifs sont atteints grâce à la combinaison efficace d'un service de diagnostic réseau (surveillance au niveau des composants), un service de test d'applications (surveillance au niveau du système) et un système de validation des données. Les deux premiers services résident sur chaque nœud du réseau et le système de validation des données réside sur chaque chef de groupe. Grâce à IFTF, les opérations de maintenance et de reconfiguration seront plus efficaces, menant à un système WSN (Wireless Sensor Network) plus fiable. Du point de vue conception, IFTF fournit de nombreux paramètres ajustables qui le rendent approprié aux divers types d'applications. Les résultats de simulation montrent que la solution présentée est efficace en termes de coût mémoire et d'énergie. En effet, le système de validation des données n'induit pas un surcoût de communication. De plus, le fonctionnement des deux services test et diagnostic augmente la consommation d'énergie de 4% en moyenne, par rapport au fonctionnement du service de diagnostic uniquement.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00953241 |
Date | 20 February 2013 |
Creators | Hamdan, Dima |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds