Return to search

Etude d'une classe d'équations différentielles affines par morceaux modélisant des réseaux de régulation biologique

Cette thèse aborde une classe de modèles de la dynamique de réseaux d'interaction biologique, en particulier génétique, définis comme systèmes d'équations différentielles affines par morceaux. Les morceaux en question sont des pavés d'un espace euclidien, dont la dimension est le nombre d'éléments en interaction dans le réseau. Chaque coordonnée représente le niveau d'activité d'un des éléments. La thèse se décompose en trois parties. Premièrement, après une brève introduction biologique, les modèles mathématiques les plus connus sont présentés. Les modèles affines par morceaux sont décrits de manière détaillée, et certains liens avec des modèles purement discrets, ainsi qu'avec des modèles différentiables incluant des sigmoïdes, sont précisés. Un récapitulatif détaillé de la littérature sur le sujet est fourni. Dans une deuxième partie, des résultats théoriques sont présentés. L'analyse des orbites périodiques, développée dans la littérature pour des systèmes linéaires par morceaux, est étendue au cas affine par morceaux. Ensuite, un point de vue géométrique et combinatoire est porté sur la dynamique locale, au niveau des pavés décrits plus haut. Les conséquences globales de cette analyse locale sont décrites en termes de dynamique symbolique. Il est montré en particulier que l'entropie topologique des systèmes affines par morceaux est strictement inférieure à celle de modèles purement discrets, pour une large classe de systèmes. La troisième partie concerne l'analyse numérique des systèmes étudiés. Après une présentation des algorithmes implémentés, un jeu de données de simulations en dimension 4 est analysé, ainsi qu'un exemple plus spécifique en dimension 3.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010463
Date20 July 2005
CreatorsFarcot, Etienne
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds