L’objectif de cette thèse est d’appliquer la théorie du contrôle optimal à la dynamique de systèmes quantiques. Le premier point consiste à introduire dans le domaine du contrôle quantique des outils de contrôle optimal initialement développés en mathématique. Cette approche a ensuite été appliquée sur différent types de systèmes quantiques décrit par une grande ou une petite dimension. La première partie du manuscrit introduit les différents outils de contrôles utilisés avec une approche adaptée à un public de physiciens. Dans la seconde partie, ces techniques sont utilisées pour contrôler la dynamique des spins en RMN et IRM. La troisième partie s’intéresse au développement de nouveaux algorithmes itératifs de contrôle optimal appliqués au contrôle par champ laser de la dynamique rotationnelle des molécules linéaires en phases gazeuse ainsi qu’au développement d’une stratégie de contrôle simple permettant de délocaliser une molécule dans un plan. La quatrième partie traite le contrôle en temps minimum d’un condensat de Bose-Einstein à deux composantes. La dernière partie permet de comparer qualitativement et quantitativement les différentes méthodes de contrôle optimal utilisées. Les seconde et troisième parties ont également bénéficier de l’implémentation expérimentale des solutions de contrôle optimal obtenues. / The goal of this thesis is to apply the optimal control theory to the dynamics of quantum systems.The first part aim at introducing the tools of optimal control in quantum control which were initially developedin mathematics. This approch has been applied on different kinds of quantum system with small and largedimensions. The first part of this manuscript introduces the optimal control tools which are used with a pointof view suited to a public of physicists. In the second part these techniques are used to control the dynamics ofspins in NMR and MRI. The third part deals with the development of new iterative algorithms applied to thecontrol by laser fields of the rotational dynamics of linear molecules in a gaz phases and the development of asimple control strategy allowing to delocalize a molecule in a plan. The fourth part treats the time-minimumcontrol of a two-component Bose Einstein condensate. The last part compares the different optimal controlmethods used qualitatively and quantitatively. The solution found in the second and third parts have been alsoapplied experimentally.
Identifer | oai:union.ndltd.org:theses.fr/2011DIJOS067 |
Date | 12 October 2011 |
Creators | Lapert, Marc |
Contributors | Dijon, Sugny, Dominique |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0135 seconds