Return to search

Adaptive control of coherent soft X-rays / Adaptive Kontrolle kohärenter weicher Röntgenstrahlung

The availability of coherent soft x-rays through the nonlinear optical process of high-harmonic generation allows for the monitoring of the fastest events ever observed in the laboratory. The attosecond pulses produced are the fundamental tool for the time-resolved study of electron motion in atoms, molecules, clusters, liquids and solids in the future. However, in order to exploit the full potential of this new tool it is necessary to control the coherent soft x-ray spectra and to enhance the efficiency of conversion from laser light to the soft x-ray region in the harmonic-generation process. This work developed a comprehensive approach towards the optimization of the harmonic generation process. As this process represents a fundamental example of \emph{light}--\emph{matter} interaction there are two ways of controlling it: Shaping the generating laser \emph{light} and designing ideal states of \emph{matter} for the conversion medium. Either of these approaches was closely examined. In addition, going far beyond simply enhancing the conversion process it could be shown that the qualitative spectral response of the process can be modified by shaping the driving laser pulse. This opens the door to a completely new field of research: Optimal quantum control in the attosecond soft x-ray region---the realm of electron dynamics. In the same way as it is possible to control molecular or lattice vibrational dynamics with adaptively shaped femtosecond laser pulses these days, it will now be feasible to perform real-time manipulation of tightly bound electron motion with adaptively shaped attosecond light fields. The last part of this work demonstrated the capability of the herein developed technique of coherent soft-x-ray spectral shaping, where a measured experimental feedback was used to perform a closed-loop optimization of the interaction of shaped soft x-ray light with a sulfur hexafluoride molecule to arrive at different control objectives. For the optimization of the high-harmonic-generation process by engineering the conversion medium, both the gas phase and the liquid phase were explored both in experiment and theory. Molecular media were demonstrated to behave more efficiently than commonly used atomic targets when elliptically polarized driving laser pulses are applied. Theory predicted enhancement of harmonic generation for linearly polarized driving fields when the internuclear distance is increased. Reasons for this are identified as the increased overlap of the returning electron wavefunction due to molecular geometry and the control over the delocalization of the initial electronic state leading to less quantum-mechanical spreading of the electron wavepacket during continuum propagation. A new experimental scheme has been worked out, using the method of molecular wavepacket generation as a tool to enhance the harmonic conversion efficiency in `pump--drive' schemes. The latter was then experimentally implemented in the study of high-harmonic generation from water microdroplets. A transition between the dominant laser--soft-x-ray conversion mechanisms could be observed, identifying plasma-breakdown as the fundamental limit of high-density high-harmonic generation. Harmonics up to the 27th order were observed for optimally laser-prepared water droplets. To control the high-harmonic generation process by the application of shaped laser light fields a laser-pulse shaper based on a deformable membrane mirror was built. Pulse-shape optimization resulted in increased high-harmonic generation efficiency --- but more importantly the qualitative shape of the spectral response could be significantly modified for high-harmonic generation in waveguides. By adaptive optimization employing closed-loop strategies it was possible to selectively generate narrow (single harmonics) and broad bands of harmonic emission. Tunability could be demonstrated both for single harmonic orders and larger regions of several harmonics. Whereas any previous experiment reported to date always produced a plateau of equally intense harmonics, it has been possible to demonstrate ``untypical'' harmonic soft x-ray spectra exhibiting ``switched-off'' harmonic orders. The high degree of controllability paves the way for quantum control experiments in the soft x-ray spectral region. It was also demonstrated that the degree of control over the soft x-ray shape depends on the high-harmonic generation geometry. Experiments performed in the gas jet could not change the relative emission strengths of neighboring harmonic orders. In the waveguide geometry, the relative harmonic yield of neighboring orders could be modified at high contrast ratios. A simulation based solely on the single atom response could not reproduce the experimentally observed contrast ratios, pointing to the importance of propagation (phase matching) effects as a reason for the high degree of controllability observed in capillaries, answering long-standing debates in the field. A prototype experiment was presented demonstrating the versatility of the developed soft x-ray shaping technique for quantum control in this hitherto unexplored wavelength region. Shaped high-harmonic spectra were again used in an adaptive feedback loop experiment to control the gas-phase photodissociation reaction of SF$_6$ molecules. A time-of-flight mass spectrometer was used for the detection of the ionic fragments. The branching ratios of particular fragmentation channels could be varied by optimally shaped soft x-ray light fields. Although in one case only slight changes of the branching ratio were possible, an optimal solution was found, proving the sufficient technical stability of this unique coherent soft-x-ray shaping method for future applications in optimal control. Active shaping of the spectral amplitude in coherent spectral regions of $\sim$10~eV bandwidth was shown to directly correspond to shaping the temporal features of the emerging soft x-ray pulses on sub-femtosecond time scales. This can be understood by the dualism of frequency and time with the Fourier transformation acting as translator. A quantum-mechanical simulation was used to clarify the magnitude of temporal control over the shape of the attosecond pulses produced in the high-harmonic-generation process. In conjunction with the experimental results, the first attosecond time-scale pulse shaper could thus be demonstrated in this work. The availability of femtosecond pulse shapers opened the field of adaptive femtosecond quantum control. The milestone idea of closed-loop feedback control to be implemented experimentally was expressed by Judson and Rabitz in their seminal work titled ``Teaching lasers to control molecules''. This present work extends and turns around this statement. Two fundamentally new achievements can now be added, which are ``Teaching molecules to control laser light conversion'' and ``Teaching lasers to control coherent soft x-ray light''. The original idea thus enabled the leap from femtosecond control of molecular dynamics into the new field of attosecond control of electron motion to be explored in the future. The \emph{closed}-loop approach could really \emph{open} the door towards fascinating new perspectives in science. Coming back to the introduction in order to close the loop, let us reconsider the analogy to the general chemical reaction. Photonic reaction control was presented by designing and engineering effective media (catalysts) and controlling the preparation of educt photons within the shaped laser pulses to selectively produce desired photonic target states in the soft x-ray spectral region. These newly synthesized target states in turn could be shown to be effective in the control of chemical reactions. The next step to be accomplished will be the control of sub-femtosecond time-scale electronic reactions with adaptively controlled coherent soft x-ray photon bunches. To that end a time-of-flight high-energy photoelectron spectrometer has recently been built, which will now allow to directly monitor electronic dynamics in atomic, molecular or solid state systems. Fundamentally new insights and applications of the nonlinear interaction of shaped attosecond soft x-ray pulses with matter can be expected from these experiments. / Die Verfügbarkeit kohärenter weicher Röntgenstrahlung durch den nichtlinear-optischen Prozess der Erzeugung hoher Harmonischer von Laserstrahlung erlaubt es, die schnellsten jemals im Labor beobachteten Ereignisse in ihrem Ablauf zu verfolgen. Die in diesem Prozess erzeugten Attosekundenpulse stellen das wichtigste Werkzeug dar, um in Zukunft die zeitaufgelöste Elektronenbewegung in Atomen, Molekülen, Clustern, Flüssigkeiten und Festkörpern zu untersuchen. Um jedoch das volle Potential dieses Werkzeugs zu nutzen, ist es notwendig, den Prozess der Erzeugung hoher Harmonischer in einer Weise zu optimieren, die es ermöglicht, zum einen gezielt Einfluss auf die Eigenschaften der kohärenten weichen Röntgenspektren zu nehmen und zum anderen die Konversionseffizienz bei der Umwandlung von Laserlicht in harmonische Strahlung zu erhöhen. In dieser Arbeit wurde eine umfassende Herangehensweise an das Problem der Optimierung des Erzeugungsprozesses der hohen Harmonischen Strahlung entwickelt. Da der Prozess ein fundamentales Beispiel einer Licht-Materie-Wechselwirkung darstellt, gibt es genau zwei Möglichkeiten, ihn zu kontrollieren: Die Formung des erzeugenden Laser\emph{lichtes} und die Entwicklung idealer \emph{Materie}zustände als Konversionsmedien. Beide Möglichkeiten wurden im Rahmen dieser Arbeit gründlich untersucht. Zusätzlich zur bloßen Steigerung der Ausbeute an Hoher-Harmonischer-Strahlung konnte darüber hinaus gezeigt werden, dass es möglich ist, die Spektren der erzeugten kohärenten weichen Röntgenstrahlung durch geformte Laserpulse qualitativ zu modifizieren. Dies eröffnet Möglichkeiten für ein grundlegend neues Forschungsgebiet: Optimale Quantenkontrolle im Attosekunden- und weichen Röntgenbereich---dem Bereich elektronischer Dynamik. Auf die gleiche Art und Weise wie es heutzutage möglich ist, Molekül- oder Gitterschwingungsdynamik mit adaptiv geformten Femtosekundenpulsen zu kontrollieren, sind wir ab jetzt in der Lage, mit adaptiv geformten Attosekunden-Lichtfeldern die Bewegung von fest gebundenen Elektronen in Echtzeit zu beeinflussen. Im letzten Teil dieser Arbeit wird das Potential der hierin entwickelten Methode der Formung kohärenter weicher Röntgenspektren demonstriert, indem ein gemessenes experimentelles Rückkopplungssignal benutzt wurde, um eine `closed-loop' Optimierung der Wechselwirkung von geformtem weichen Röntgenlicht mit Schwefelhexafluoridmolekülen für unterschiedliche Kontrollziele durchzuführen. Im Hinblick auf die Entwicklung und Anpassung des Konversionsmediums zur Optimierung des Prozesses der Erzeugung hoher Harmonischer wurden sowohl die Gas- als auch die Flüssigphase sowohl im Experiment als auch in der Theorie erforscht. Es wurde gezeigt, dass molekulare Medien sich effizienter als Atome verhalten, wenn der erzeugungende Laserpuls elliptisch polarisiert ist. In einer theoretischen Untersuchung wird eine Zunahme der Konversionseffizienz für linear polarisierte Erzeugungspulse erwartet wenn der Kernabstand vergrößert wird. Gründe dafür sind zum einen die Zunahme des Überlapps der zum Atom zurückkehrenden Wellenfunktion des Elektrons wegen der Molekülgeometrie. Zum anderen ermöglicht die Variation des Kernabstands die Kontrolle über die Delokalisation des elektronischen Anfangszustands, die zu einem verminderten quantenmechanischen Zerlaufen des Wellenpakets während seiner Propagation im Kontinuum führt. Eine neuartige experimentelle Methode wurde ausgearbeitet, die sich die Technik der Erzeugung molekularer Wellenpakete als Werkzeug zunutze macht, um die Konversionseffizienz der harmonischen Strahlung in einem so genannten `pump--drive' Verfahren zu erhöhen. Dieses wurde dann in einer Untersuchung der Erzeugung hoher Harmonischer an Wasser-Mikrotropfen experimentell implementiert. Dadurch konnte ein Übergang zwischen den beiden dominanten Mechanismen der Umwandlung von Laserstrahlung in weiches Röntgenlicht beobachtet werden, der den Plasma-Durchbruch als die natürliche Grenze bei der Erzeugung von hohen Harmonischen in hochdichten Medien identifizierte. Harmonische bis hin zur 27sten Ordnung wurden für optimal durch den Laser präparierte Wassertropfen nachgewiesen. Um den Prozess der Erzeugung hoher Harmonischer durch geformte Lichtfelder zu kontrollieren, wurde ein auf einem deformierbaren Membranspiegel basierender Laserpulsformer aufgebaut. Mittels Pulsformoptimierung war es ebenfalls möglich, eine Erhöhung der harmonischen Erzeugungseffizienz zu erzielen---wichtiger jedoch: Es konnte die qualitative Form der erzeugten kohärenten weichen Röntgenspektren signifikant modifiziert werden. Durch adaptive Optimierung unter Anwendung von `closed-loop' Strategien war es möglich, selektiv schmal- (einzelne harmonische Ordnungen) und breitbandige harmonische Spektren zu erzeugen. Durchstimmbarkeit wurde demonstriert sowohl für einzelne Harmonische als auch für größere zusammenhängende Bereiche mehrerer harmonischer Ordnungen. Während in allen bislang durchgeführten Experimenten ein Plateau gleichintensiver harmonischer Ordnungen beobachtet wurde, ist es jetzt zum ersten Mal gelungen, ``untypische'' weiche Röntgenspektren zu generieren, bei denen einzelne harmonische Ordnungen ``ausgeschaltet'' sind. Der hohe Grad der Kontrollierbarkeit bereitet den Weg für Experimente zur Quantenkontrolle im weichen Röntgenbereich. Es wurde ebenso gezeigt, dass der Grad der Kontrolle über die Form der weichen Röntgenspektren von der Erzeugungsgeometrie des Umwandlungsprozesses abhängt. In Experimenten zur Umwandlung im Gasstrahl war es nicht möglich die relative Emissionsstärke benachbarter harmonischer Ordnungen zu verändern. Im Gegensatz dazu konnte in der Wellenleitergeometrie die relative Ausbeute benachbarter Ordnungen mit hohem Kontrastverhältnis modifiziert werden. Eine auf der Antwort eines einzelnen Atoms beruhende Simulation konnte die experimentell beobachteten Kontrastverhältnisse nicht ausreichend reproduzieren: Ein Hinweis auf den Einfluss von Propagationseffekten (Phasenanpassung) als Ursache des in Wellenleitern beobachteten hohen Grades an Kontrollierbarkeit, was offene Debatten auf diesem Feld beantwortet. Um das Anwendungspotential der entwickelten Technik zur Formung kohärenter weicher Röntgenspektren im Hinblick auf Quantenkontrollexperimente in der entspechenden diesbezüglich bislang unerforschten Wellenlängenregion aufzuzeigen, wurde ein Prototypexperiment durchgeführt. Hier wurden wiederum mittels adaptiver Rückkopplungsschleife die nun formbaren Röntgenspektren dazu eingesetzt, die Photodissoziationsreaktion von SF$_6$-Molekülen in der Gasphases zu kontrollieren. Ein Flugzeitmassenspektrometer wurde zur Detektion der ionischen Fragmente herangezogen. Das Verzweigungsverhältnis einzelner Fragmentationskanäle konnte durch den Einfluss optimal geformter weicher Röntgenfelder variiert werden. Obwohl in einem Fall nur eine leichte Veränderung möglich war, konnte eine optimale Lösung gefunden werden, wodurch die ausreichende technische Stabilität dieser einzigartigen Methode zur Formung kohärenter weicher Röntgenstrahlung für zukünftige Anwendungen auf dem Gebiet der optimalen Kontrolle bewiesen wurde. Es wurde ferner darauf eingegangen, dass aktive Formung der spektralen Amplitude in kohärenten Spektren von $\sim$10~eV Bandbreite in direktem Zusammenhang steht mit der Formung zeitlicher Eigenschaften der entstehenden weichen Röntgenpulsen auf einer Subfemtosekundenzeitskala. Dies kann durch den Frequenz-Zeit-Dualismus verstanden werden, in dem die Fouriertransformation als Übersetzer fungiert. Eine quantenmechanische Simulation wurde durchgeführt, um das Ausmaß der zeitlichen Kontrolle über die Attosekundenpulsform beim Umwandlungsprozess näher zu beleuchten. Zusammen mit den experimentellen Ergebnissen konnte damit der erste Attosekundenpulsformer in dieser Arbeit demonstriert werden. Die Verfügbarkeit von Femtosekundenpulsformern eröffnete das Gebiet der adaptiven Femtosekunden-Quantenkontrolle. Die bahnbrechende Idee der `closed-loop' Rückkopplungskontrolle, die dazu experimentell implementiert wurde, war von Judson und Rabitz in ihrer wegweisenden Arbeit mit dem Titel ``Teaching lasers to control molecules'' (``Es Lasern beibringen, Moleküle zu kontrollieren'') zum Ausdruck gekommen. Die vorliegende Arbeit kann dieser Idee nun eine erweiterte und eine ``umgekehrte'' Form hinzufügen: ``Teaching molecules to control laser light conversion'' (``Es Molekülen beibringen, Laserlichtkonversion zu kontrollieren'') und ``Teaching lasers to control coherent soft x-ray light'' (``Es Lasern beibringen, kohärentes weiches Röntgenlicht zu kontrollieren''). Die ursprüngliche Idee erlaubte somit nun also auch den Sprung von der Femtosekundenkontrolle molekularer Dynamik hinein in das neue Gebiet der Attosekundenkontrolle elektronischer Bewegung, dessen Erforschung nun unmittelbar bevorsteht. Die Idee der \emph{geschlossenen} Schleife (`closed-loop') konnte damit tatsächlich das Tor \emph{öffnen} hinaus in eine Fülle neuer Perspektiven für die Naturwissenschaft.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:841
Date January 2004
CreatorsPfeifer, Thomas
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0056 seconds