Virtual knot theory, introduced by Kauffman, is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation of Etingof and Kazhdan's theory of quantization of Lie bi-algebras. Classical knots inject into virtual knots}, and flat virtual knots is the quotient of virtual knots which equates the real positive and negative crossings, and in this sense is complementary to classical knot theory within virtual knot theory.
We classify flat virtual tangles with no closed components and give bases for its ``infinitesimal'' algebras. The classification of the former can be used as an invariant on virtual tangles with no closed components and virtual braids. In a subsequent paper, we will show that the infinitesimal algebras are the target spaces of any universal finite-type invariants on the respective variants of the flat virtual tangles.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/33962 |
Date | 11 December 2012 |
Creators | Chu, Karene Kayin |
Contributors | Bar-Natan, Dror |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds