Return to search

Approches robustes pour la comparaison d'images et la reconnaissance d'objets

La problématique générale de cette thèse est la comparaison d'images, que nous traitons via différentes applications. Nous proposons un système complet, robuste et automatique de reconnaissance d'objets multiples, dont la mise en œuvre repose principalement sur deux approches méthodologiques : la théorie de la décision « a contrario » et la théorie du transport optimal de Monge-Kantorovich. Dans ce cadre, une mesure de dissimilarité est définie pour la comparaison de descripteurs locaux de type SIFT en fonction du coût de transport optimal entre histogrammes circulaires (Circular Earth Mover's Distance). Un critère de mise en correspondance ces descripteurs s'appuyant sur la théorie de la décision a contrario est par la suite introduit. Ce critère permet de s'affranchir du réglage du seuil de détection et de la restriction usuelle au plus proche voisin. Nous proposons un algorithme de type RANSAC (RANdom SAmple Consensus) pour le groupement multiple de correspondances de descripteurs locaux. L'approche proposée permet la sélection du modèle géométrique de la transformation rigide due au changement de point de vue et au mouvement de l'objet détecté entre les différentes images. Dans le cadre du transport optimal, nous étudions par ailleurs l'intérêt de l'EMD (Earth Mover's Distance) pour la comparaison globale d'images (indexation d'images). Nous proposons enfin une méthode de régularisation de la carte de transport s'inspirant des approches par filtrage non-local, en vue d'une application au changement de contraste et au transfert de couleurs entre images.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00472442
Date09 December 2009
CreatorsRabin, Julien
PublisherTélécom ParisTech
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds