Return to search

Modèles profonds de régression et applications à la vision par ordinateur pour l'interaction homme-robot / Deep Regression Models and Computer Vision Applications for Multiperson Human-Robot Interaction

Dans le but d’interagir avec des êtres humains, les robots doivent effectuer destâches de perception basique telles que la détection de visage, l’estimation dela pose des personnes ou la reconnaissance de la parole. Cependant, pour interagir naturellement, avec les hommes, le robot doit modéliser des conceptsde haut niveau tels que les tours de paroles dans un dialogue, le centre d’intérêtd’une conversion, ou les interactions entre les participants. Dans ce manuscrit,nous suivons une approche ascendante (dite “top-down”). D’une part, nousprésentons deux méthodes de haut niveau qui modélisent les comportementscollectifs. Ainsi, nous proposons un modèle capable de reconnatre les activitésqui sont effectuées par différents des groupes de personnes conjointement, telsque faire la queue, discuter. Notre approche gère le cas général où plusieursactivités peuvent se dérouler simultanément et en séquence. D’autre part,nous introduisons une nouvelle approche d’apprentissage par renforcement deréseau de neurones pour le contrôle de la direction du regard du robot. Notreapproche permet à un robot d’apprendre et d’adapter sa stratégie de contrôledu regard dans le contexte de l’interaction homme-robot. Le robot est ainsicapable d’apprendre à concentrer son attention sur des groupes de personnesen utilisant seulement ses propres expériences (sans supervision extérieur).Dans un deuxième temps, nous étudions en détail les approchesd’apprentissage profond pour les problèmes de régression. Les problèmesde régression sont cruciaux dans le contexte de l’interaction homme-robotafin d’obtenir des informations fiables sur les poses de la tête et du corpsdes personnes faisant face au robot. Par conséquent, ces contributions sontvraiment générales et peuvent être appliquées dans de nombreux contextesdifférents. Dans un premier temps, nous proposons de coupler un mélangegaussien de régressions inverses linéaires avec un réseau de neurones convolutionnels. Deuxièmement, nous introduisons un modèle de mélange gaussien-uniforme afin de rendre l’algorithme d’apprentissage plus robuste aux annotations bruitées. Enfin, nous effectuons une étude à grande échelle pour mesurerl’impact de plusieurs choix d’architecture et extraire des recommandationspratiques lors de l’utilisation d’approches d’apprentissage profond dans destâches de régression. Pour chacune de ces contributions, une intense validation expérimentale a été effectuée avec des expériences en temps réel sur lerobot NAO ou sur de larges et divers ensembles de données. / In order to interact with humans, robots need to perform basic perception taskssuch as face detection, human pose estimation or speech recognition. However, in order have a natural interaction with humans, the robot needs to modelhigh level concepts such as speech turns, focus of attention or interactions between participants in a conversation. In this manuscript, we follow a top-downapproach. On the one hand, we present two high-level methods that model collective human behaviors. We propose a model able to recognize activities thatare performed by different groups of people jointly, such as queueing, talking.Our approach handles the general case where several group activities can occur simultaneously and in sequence. On the other hand, we introduce a novelneural network-based reinforcement learning approach for robot gaze control.Our approach enables a robot to learn and adapt its gaze control strategy inthe context of human-robot interaction. The robot is able to learn to focus itsattention on groups of people from its own audio-visual experiences.Second, we study in detail deep learning approaches for regression prob-lems. Regression problems are crucial in the context of human-robot interaction in order to obtain reliable information about head and body poses or theage of the persons facing the robot. Consequently, these contributions are really general and can be applied in many different contexts. First, we proposeto couple a Gaussian mixture of linear inverse regressions with a convolutionalneural network. Second, we introduce a Gaussian-uniform mixture model inorder to make the training algorithm more robust to noisy annotations. Finally,we perform a large-scale study to measure the impact of several architecturechoices and extract practical recommendations when using deep learning approaches in regression tasks. For each of these contributions, a strong experimental validation has been performed with real-time experiments on the NAOrobot or on large and diverse data-sets.

Identiferoai:union.ndltd.org:theses.fr/2018GREAM026
Date22 May 2018
CreatorsLathuiliere, Stéphane
ContributorsGrenoble Alpes, Horaud, Radu
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds