Orientador: Aparecido Augusto de Carvalho / Resumo: A patologia mais recorrente na coluna vertebral é a escoliose. A modificação estrutural causada pela escoliose gera o desalinhamento postural global do indivíduo. Uma das modificações causadas pelo desalinhamento postural é a forma como o indivíduo distribui o peso na região plantar dos pés. O objetivo deste trabalho foi implementar um sistema eletrônico constituído por um baropodômetro e redes neurais artificiais para separar pacientes com Grau I na classificação de Ricard, de 1o a 19o de escoliose, em dois grupos, C1 (1o a 9o) e C2 (10o a 19o). A maior percentagem de pacientes com escoliose está nesta faixa, aqueles que não precisam usar coletes ou fazer cirurgia, e cujo tratamento é realizado com ginásticas especiais e com avaliações freqüentes pelo profissional de saúde. A classificação dos pacientes nos grupos de escoliose foi implementada com o software Matlab e redes neurais artificiais, usando o algoritmo de treinamento backpropagation. A precisão média da classificação foi de 93,7% para o grupo C1 e 94,5% para o grupo C2. As acurácias na classificação foram de 83,3% para o grupo C1 e 96% para o grupo C2. O sistema implantado pode contribuir para o tratamento de pacientes com grau de escoliose na faixa de 1o a 19o, o intervalo de maior incidência desta patologia, no qual o monitoramento da condição clínica com técnicas não invasivas é de fundamental importância. / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000888236 |
Date | January 2017 |
Creators | Fanfoni, Caroline Meireles |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Bauru). |
Publisher | Bauru, |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | f. |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.002 seconds