Return to search

DIFFERENTIAL GENE EXPRESSION IN EQUINE CARTILAGINOUS TISSUES AND INDUCED CHONDROCYTES

Degenerative joint disease, or osteoarthritis, is a major cause of lameness and morbidity in horses, humans, and dogs. There are no truly satisfactory cures for this widespread problem and current treatments all have limitations or unwanted side effects.
New cell-based strategies to repair joint surface lesions have generated a high level of interest, but have yet to achieve the full restoration of articular cartilage structure and function. Currently used therapy cells include autologous chondrocytes and adult mesenchymal cells such as bone marrow derived cells and adipose derived cells. Unfortunately, the resultant repair tissue is biomechanically inferior fibrocartilage. A critical gap in knowledge in this regard is a limited understanding of the specific cellular phenotype of normal, robust articular chondrocytes.
This thesis examines the global mRNA transcriptome of equine articular cartilage to test the hypothesis that adult articular chondrocytes have a unique gene expression profile. In the first part of the study, RNA-sequencing was used to compare the mRNA transcriptome of normal adult articular cartilage with five other cartilaginous tissues. From these comparisons, locus level gene expression and alternative splicing patterns have been identified that clearly distinguish articular cartilage. In the second part of the study, fetal (interzone, cartilage anlagen chondrocytes, dermal fibroblasts) and adult (bone marrow derived, adipose derived, articular chondrocytes, dermal fibroblasts) primary cells were grown in culture and stimulated to differentiate into chondrocytes. The chondrogenic differentiation potential as assessed by matrix proteoglycan and the expression of cartilage biomarker genes was highly variable among cell types. Together, these results advance our understanding of the specific phenotype of articular chondrocytes and the potential of prospective therapeutic progenitor cells to differentiate into articular chondrocytes. This new knowledge will improve efforts to optimize cell-based therapies for osteoarthritis and the repair of joint cartilage lesions.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gluck_etds-1025
Date01 January 2016
CreatorsAdam, Emma N.
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Veterinary Science

Page generated in 0.0018 seconds