Return to search

A Feedback Loop Couples Musashi-1 Activity to Omega-9 Fatty Acid Biosynthesis: A Dissertation

All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-­‐messenger systems. In bacteria, metabolites also affect post-­‐transcriptional regulatory mechanisms, but there are only a few isolated examples of this regulation in eukaryotes. Here, I present evidence that RNA-­‐binding by the stem cell translation regulator Musashi-­‐1 (MSI1) is allosterically inhibited by 18-­‐22 carbon ω-­‐9 monounsaturated fatty acids. The fatty acid binds to the N-­‐terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. I identify stearoyl-­‐CoA desaturase-­‐1 as a MSI1 target, revealing a feedback loop between ω-­‐9 fatty acid biosynthesis and MSI1 activity. To my knowledge, this is the first example of an RNA-­‐binding protein directly regulated by fatty acid. This finding may represent one of the first examples of a potentially broad network connecting metabolism with post-­‐transcriptional regulation.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1720
Date03 September 2014
CreatorsClingman, Carina C.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0031 seconds