Depuis leur apparition, les séquenceurs haut débit ont révolutionné l'étude des transcriptomes à l'échelle du génome. En effet, ils offrent la possibilité de générer des millions, voire des milliards de séquences, appelées reads. Des nouvelles approches transcriptomiques, telles que la Digital Gene Expression (DGE) et le RNA-Sequencing (RNA-Seq), permettent aujourd'hui de répertorier, de quantifier, voire reconstruire tous les transcrits d'une cellule, même les plus rares. Parmi ce type de transcrits se trouvent des ARN non-codants régulateurs ; des variants d'épissages créateurs de protéines ; et aussi des chimères (par fusion de gènes ou trans-épissage). La caractérisation de l'ensemble de ces transcrits représente un réel défi algorithmique, mais suscite aussi un défi biologique car certains peuvent être impliqués dans de nombreux processus cellulaires physiologiques et pathologiques et sont fréquemment décrits dans les cancers.Dans ce travail, nous proposons des algorithmes et des méthodes pour la caractérisation et l'annotation des transcriptomes. Tout d'abord, nous proposons une étude statistique sur la DGE afin d'évaluer l'impact des erreurs de séquences lors de l'analyse des reads. À partir de cette analyse, nous avons développé un pipeline d'annotation pour la DGE. Par le biais de ce premier travail, nous avons pu démontrer que de nombreuses informations étaient partagées entre les reads. Cela nous a amené à concevoir la structure d'indexation Gk arrays qui permet d'organiser une quantité massive de reads de façon à pouvoir interroger rapidement la structure sous forme de requêtes. Enfin, en s'appuyant sur les Gk arrays, nous avons développé CRAC qui est un logiciel spécialisé dans le traitement du RNA-Seq. En intégrant sa propre phase de mapping, CRAC est capable de distinguer les phénomènes biologiques des erreurs de séquences. Ilpermet notamment l'identification de chimères qui sont souvent très faiblement exprimées dans un transcriptome et sont par nature complexe à détecter avec des parties localisées à différents endroits sur le génome.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00842810 |
Date | 29 September 2011 |
Creators | Philippe, Nicolas |
Publisher | Université Montpellier II - Sciences et Techniques du Languedoc |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds