Glioblastoma multiforme (GBM) ist der häufigste bösartige Hirntumor bei Erwachsenen. Unbehandelt liegt das mediane Überleben bei circa drei Monaten. Mithilfe maximal möglicher Resektion des Tumors und anschließender aggressiver kombinierter Radiochemotherapie, bestehend aus Bestrahlung und dem Zytostatikum Temozolomid, wird das mediane Überleben auf circa 15 Monate nach Diagnosestellung angehoben. Trotz intensiver Forschung ist über die Entstehung des GBMs wenig bekannt, der einzige bisher bestätigte prädisponierende Faktor ist eine Bestrahlung des Kopfes, insbesondere im Kindes- und Jugendalter.
Ein charakteristisches Merkmal des GBMs ist seine große Heterogenität sowohl innerhalb des Tumors eines Patienten als auch zwischen den Tumoren verschiedener Patienten. Dadurch werden die erfolgreiche Behandlung und eine mögliche Heilung erschwert, da sich bis heute nicht zuverlässig vorhersagen lässt, wie gut ein Patient von der Standardtherapie profitieren wird. Das infiltrative Wachstum von GBMs entlang von Nervenbahnen in der gesunden weißen Substanz oder mithilfe der Blutgefäße macht es nahezu unmöglich, die gesamte Tumormasse chirurgisch zu entfernen, was eine hohe Rezidivrate zur Folge hat. Ein größeres Verständnis für die Entstehungsmechanismen des GBMs und seiner Therapieresistenzen ist essenziell für die Entwicklung besserer Therapiemöglichkeiten und verlangt dringend nach geeigneten Modellen für deren Erforschung.
In der Krebsforschung bedient man sich häufig an Zellkultur- oder Tiermodellen. Zellkulturen bieten den Vorteil, dass sie preisgünstig in der Unterhaltung sind und sich in relativ kurzer Zeit große Datenmengen durch einen hohen experimentellen Durchsatz erzielen lassen. Nachteilig ist, dass jeglicher Gewebeverband fehlt und das Modell daher nicht die reale Situation in einem ganzheitlichen Organismus widerspiegelt. Im Tiermodell ist der Organismus mitsamt verschiedenen Zelltypen, extrazellulärer Matrix und Blutkreislauf gegeben, jedoch gibt es mitunter gravierende Interspeziesunterschiede, die eine erfolgreiche klinische Translation der Ergebnisse aus Tierversuchen in das humane System erschweren. Patient-derived xenografts, also Transplantate aus Patientengewebe, machen sich den Organismus des Versuchstieres zunutze, erhalten aber dabei auch die Charakteristik des ursprünglichen Tumors weitgehend. Um eine Abstoßung des transplantierten Tumorgewebes zu verhindern, werden zumeist immundefiziente Tiere verwendet, bei denen die immunologische Komponente fehlt, was das Modell artifizieller macht. Zudem ist das erzeugte Tierleid ein nicht zu unterschätzender Faktor, denn Überlebenszeitanalysen mit dem Tod des Versuchstieres als Endpunkt, spielen eine wesentliche Rolle in der onkologischen Forschung. Um das Tierleid in wissenschaftlichen Experimenten zu verringern, wurde 1959 erstmals das 3R-Prinzip (Reduction, Replacement, Refinement) definiert, wonach Tierversuche möglichst komplett ersetzt, Tierzahlen reduziert und die Bedingungen für Versuchstiere verbessert werden sollen. Diesem Prinzip folgend wurden im Institut für Anatomie der Universität Leipzig die organotypischen Schnittkulturen aus Patientengewebe als Alternative zum Tierversuch etabliert. Hierbei wird operativ entnommenes Tumorgewebe von Patienten mithilfe eines Tissue Choppers in 350 µm dünne Scheiben geschnitten und auf Membranen an einer Luft-Medium-Grenze kultiviert. Gewebe aus humanem GBM kann auf diese Weise bis zu zwei Wochen vital erhalten und für Versuche verwendet werden. In der hier vorliegenden Promotionsarbeit wurden Schnittkulturen aus GBM-Gewebe von 25 Patienten angelegt und der Standardbehandlung aus Temozolomid und Bestrahlung unterzogen. Anschließend wurde das Gewebe histologisch aufgearbeitet, um einerseits die Qualität des Gewebeerhalts mittels klassischer Färbungen mit Hämatoxylin und Eosin beurteilen und um andererseits Marker für Proliferation (Ki67) und Apoptose (TUNEL-Assay) anfärben und quantifizieren zu können. In der Vergangenheit beschränkte sich die Auswertung solcher Färbungen vorrangig auf die manuelle Quantifizierung, was zeitintensiv und abhängig von der durchführenden Person zu abweichenden Ergebnissen führt. Im Rahmen dieser Arbeit gelang die automatisierte quantitative Auswertung histologischer Färbungen von kultivierten Gewebeschnitten und deren Veröffentlichung. Durch die Automatisierung kann die Analyse deutlich schneller erfolgen, ist objektiver und damit auch geeigneter für eine klinische Anwendung.
Zusätzlich zur histologischen Aufarbeitung des Gewebes wurde aus den Schnittkulturen RNA extrahiert, um Behandlungseffekte auf Expressionsebene untersuchen zu können. Für einen Patienten gelang der Vergleich zwischen Tumorgewebe und angrenzendem Tumorzugangsgewebe, da von beiden Gewebetypen Schnittkulturen angelegt und die Behandlung durchgeführt werden konnte. Mit einer Sequenziertiefe von bis zu 368 Millionen Reads pro Probe, wurden 1888 Gene identifiziert, die im Vergleich zum angrenzendem Gewebe im Tumorgewebe signifikant herunterreguliert waren. Fast 2400 Gene waren entsprechend hochreguliert. Zwischen behandeltem und unbehandeltem Tumorgewebe gab es über 3400 Transkripte, die signifikant unterschiedlich exprimiert wurden. Die Signalweganalyse mit der IPA Software (Qiagen) ergab eine reduzierte Proliferation in behandeltem GBM-Gewebe, was sich mit den Befunden aus der Quantifizierung der Ki67-Färbung deckte. Eine Subgruppenanalyse ergab, dass Gewebekulturen von langzeitüberlebenden Patienten (Gesamtüberleben > 24 Monate) besser auf die Behandlung anzusprechen scheinen, was sich in einer signifikant erhöhten Apoptoserate im Vergleich zu Patienten mit kurzem Überleben zeigte. Schnittkulturen aus Patienten mit einem progressionsfreien Überleben (PFS) von mehr als 7 oder 12 Monaten zeigten eine signifikant höhere Proliferation als Patienten mit einem PFS von unter 7 Monaten. Begründbar ist das mit einer höheren Suszeptibilität von proliferierendem Gewebe gegenüber Schäden durch Bestrahlung und Zytostatika.
Die Expressionsanalyse aller 25 Patientenproben ergab eine Hochregulierung von 58 proteinkodierenden Genen. 32 Gene waren im Vergleich zu den unbehandelten Kontrollen im behandelten Gewebe herunterreguliert. Durch die funktionelle Analyse dieser differentiell exprimierten Gene konnte gezeigt werden, dass der p53-Signalweg, die Zellzykluskontrolle, sowie mit DNA-Schäden und deren Reparatur assoziierte Gene und Signalwege nach der Behandlung vermehrt aktiviert sind.
Insgesamt zeigen die Ergebnisse der vorliegenden Arbeit, dass Schnittkulturen aus GBM-Gewebe nicht nur histologisch aufgearbeitet werden können, sondern dass es zudem möglich ist, weitreichende molekulare Untersuchungen und Genexpressionsanalysen erfolgreich durchzuführen. Weiterhin sieht man eine gute Korrelation der aus den Kulturen gewonnenen Ergebnisse mit dem klinischen Verlauf der jeweiligen Patienten, was den Rückschluss zulässt, dass die Schnittkulturen ein gutes Abbild der tatsächlichen Situation im Patienten darstellen. Damit wird die Nutzbarkeit des Modells als Alternative zum Tierversuch weiter erhöht und klinisch interessant. Die Robustheit der Methode zeigt sich dadurch, dass RNA-Analysen aus den 25 Patienten umgesetzt werden konnten, obwohl es zum Teil gravierende Unterschiede in der Qualität des kultivierten Gewebes gab. Die inter- und intratumorale Heterogenität des GBMs stellt eine große Herausforderung dar, die mit der Verwendung von biologischen und technischen Replikaten adressiert wurden. Die Korrelationsanalyse der einzelnen Replikate zeigte, dass zumindest die intratumorale Heterogenität weitgehend ausgeglichen werden konnte. Die Heterogenität zwischen den einzelnen Patienten blieb jedoch erhalten und erschwerte allgemeine Aussagen und generelle Rückschlüsse. Auch im GBM besteht daher der dringende Bedarf an individualisierten und auf den einzelnen Patienten ausgerichteten Therapieansätzen. Hierfür bedarf es zukünftig weiterer Forschung an potenziellen Biomarkern mit größeren Patientenkohorten. Gewebekulturen können hierfür sowohl für die Untersuchung von Patientengewebe als auch für die Testung neuartiger Therapieansätze eine Rolle spielen.:Einleitung 3
Glioblastoma multiforme 3
Standardtherapie und MGMT 4
Immuntherapie 5
Heterogenität im GBM 6
Individualisierte Therapie 7
RNA-Sequenzierung 8
Modelle in der Krebsforschung 10
Schnittkulturen aus Patientengewebe 11
Zielstellung der Arbeit 13
Publikation I 14
Publikation II 33
Zusammenfassung 63
Referenzen 66
Darstellung des eigenen Beitrags 72
Erklärung über die eigenständige Abfassung der Arbeit 76
Lebenslauf 77
Publikationen 78
Vorträge 78
Danksagung 79
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:83320 |
Date | 03 February 2023 |
Creators | Hähnel, Susann |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German, English |
Detected Language | German |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds