Das Spleißen von prä-mRNAs stellt in der Expression eukaryontischer Gene einen essentiellen Reifungsschritt dar. Erst durch das exakte Entfernen von nicht-kodierenden Introns und Verbinden der kodierenden Exons kann die genetische Information am Ribosom in funktionelle Proteine umgesetzt werden. Spleißen wird durch das Spleißosom katalysiert, welches sich aus den small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, U5 und U6 und einer großen Anzahl weiterer Proteinfaktoren zusammensetzt. Die snRNPs bestehen aus einer Uridin-reichen snRNA, spezifischen und generellen (Sm-)Proteinen. Die Sm-Proteine B/B`, D1, D2, D3, E, F, und G bilden einen heptameren Ring um die sog. Sm-Bindungsstelle der snRNAs. Während die Zusammenlagerung von Sm-Proteinen mit der RNA in vitro spontan ablaufen kann, wird dieser Prozess in vivo von zwei makromolekularen Proteinkomplexen assistiert, die als PRMT5- bzw. SMN-Komplex bezeichnet werden. Der PRMT5-Komplex (bestehend aus PRMT5, WD45 und pICln) agiert in der frühen Phase der Zusammenlagerung. Seine Hauptfunktion ist die symmetrische Dimethylierung der Sm-Proteine und die Stabilisierung von Sm-Proteinkomplexen durch das Chaperon pICln in zwei Intermediaten. Einhergehend mit dieser Aktivität werden auch Aggregation bzw. unspezifische Wechselwirkungen der Sm-Proteine mit RNAs verhindert. In der späten Phase der Zusammenlagerung löst der SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) pICln-Intermediate auf, wobei dieser die Sm-Proteine en bloc übernimmt und sie auf die snRNA überträgt. Während dieser Reaktion wird pICln aus den Komplexen verdrängt. Ein Fehlen des SMN-Proteins, einer Schlüsselkomponente des SMN-Komplexes, führt zur autosomal rezessiven Erbkrankheit `Spinale Muskelatrophie` (SMA) wobei der Schweregrad der Krankheit invers mit der Menge an funktionellem SMN-Protein korreliert. Es wird vermutet, dass eine gestörte snRNP-Biogenese die Ursache der SMA ist.
In der vorliegenden Arbeit sollte die U snRNP-Zusammenlagerungsmaschinerie aus rekombinanten Bausteinen rekonstituiert werden und so funktionellen und strukturellen Studien zugänglich gemacht werden. Folgende Resultate wurden in dieser Arbeit erhalten:
1) Im ersten Teil der Arbeit wurde eine experimentelle Strategie etabliert, welche die Rekonstitution des humanen SMN-Komplexes aus rekombinanten Untereinheiten erlaubte. Entscheidend hierfür war die Definition von Subkomplexen aufgrund einer Protein-Interaktionskarte. Die Subkomplexe konnten separat hergestellt und anschließend zum Gesamtkomplex vereinigt werden.
2) Die erfolgreiche Etablierung eines rekonstitutiven Systems erlaubte eine detaillierte biochemische Charakterisierung des SMN-Komplexes. Es konnte gezeigt werden, dass der rekombinante Komplex alle für die Biogenese von U snRNPs nötigen Schritte bewerkstelligen konnte. Dies schließt sowohl die Übernahme der Sm-Proteine aus den pICln-Intermediaten als auch das Verdrängen des Chaperons pICln und die Übertragung der Sm-Proteine auf die snRNAs ein.
3) Durch die Reduzierung des SMN-Gesamtkomplexes um Gemin3-5 auf einen SMN-Pentamer konnte dieser als ein funktioneller Kernbereich identifiziert werden, der die einzelnen Schritte der U snRNP-Biogenese vergleichbar mit dem gesamten Komplex bewerkstelligen konnte. Zudem agierte dieser reduzierte Komplex als notwendiger und ausreichender Spezifitätsfaktor der RNP-Zusammenlagerung.
4) Das rekombinante System ermöglichte erstmals SMN-Komplexe mit SMA-pathogenen Mutationen herzustellen und einer eingehenden funktionellen und strukturellen Untersuchung zu unterziehen. Die detaillierte Analyse der SMA-verursachenden Punktmutation SMN(E134K) offenbarte spezifische Defekte im Zusammenlagerungsprozess und damit Einblicke in die Pathophysiologie der Krankheit.
Mit der im Rahmen dieser Arbeit etablierten Rekonstitution des rekombinanten SMN-Komplexes wurde die Grundlage für die detaillierte biochemische und strukturbiologische Untersuchung der Zusammenlagerungsmaschinerie spleißosomaler U snRNPs gelegt. Dieses experimentelle System wird auch bei der Aufdeckung der biochemischen Defekte hilfreich sein, die zur neuromuskulären Krankheit SMA führen. / The splicing of pre-mRNAs is an essential step in the expression of eukaryotic genes. The precise excision of non-coding introns and joining of coding exons ensures that the genetic information can be translated into functional proteins at the ribosome. The spliceosome, which catalyzes the splicing reaction, is composed of the small nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6 and a large number of additional proteins. These RNPs consist of a uridine-rich snRNA, individual and common (Sm) proteins. The Sm proteins, termed B/B', D1, D2, D3, E, F and G form a heptameric ring around the so-called Sm-site of snRNAs and thus form a structural framework of all snRNPs termed Sm core. Although the assembly of the Sm core occurs spontaneously in vitro, this process is assisted by two macromolecular protein complexes in vivo referred to as PRMT5 and SMN complexes. The PRMT5 complex (consisting of PRMT5, WD45 and pICln) acts in the early phase of assembly. Its main functions are the symmetric dimethylation of Sm proteins and the stabilization of Sm protein complexes within two intermediates via the chaperone pICln. Along with this activity also aggregation and non-specific interactions of Sm proteins with RNAs are prevented. In the late phase of assembly, the SMN complex (consisting of SMN, Gemins 2-8 and unrip) binds to pICln-Sm intermediates, thereby taking over the Sm proteins en bloc and transfers them onto the snRNA. During this reaction pICln is displaced from the complexes. Reduced levels of the SMN protein are associated with the autosomal recessive disease `spinal muscular atrophy` (SMA) and the severity of the disease correlates inversely with the amount of functional SMN protein. It is therefore believed that the impaired biogenesis of snRNP is directly linked to the etiology of the disease.
The aim of this thesis was to reconstitute the SMN complex from recombinant sources, thereby providing the basis for mechanistic and structural studies of this unique assembly machinery. The following results were obtained in the context of this study:
1) An experimental strategy was established, which allowed the reconstitution of the human SMN complex from recombinant subunits. To accomplish this goal, defined subcomplexes were identified based on a previously published protein interaction map. Components of these subcomplexes were co-expressed, purified and could eventually be combined to the complete SMN complex.
2) The successful establishment of a reconstitution system allowed the detailed biochemical characterization of the SMN complex. It was shown that the recombinant complex executed all necessary steps in the biogenesis of U snRNPs. This included proper transfer of Sm proteins from the pICln intermediates, the displacement of the chaperone pICln and the transfer of Sm proteins onto snRNAs.
3) The reconstitution of a SMN complex lacking Gemin3-5 allowed the definition of a minimal functional core, which was sufficient to commit all individual steps of the U snRNP biogenesis in vitro. This minimal complex was also necessary and sufficient to confer specificity of the assembly reaction.
4) The recombinant system established in this thesis further opened the possibility to analyze mutant SMN proteins implicated in SMA. The investigation of the SMA-causing missense mutation SMN(E134K) revealed specific defects in the assembly process, shedding light on the etiology of the disease.
The reconsitutive system established in this thesis provides the basis for a detailed biochemical and structural investigation of the assembly machinery. It will also help to uncover biochemical defects directly linked to the neuromuscular disorder SMA.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:9816 |
Date | January 2014 |
Creators | Englbrecht, Clemens |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-sa/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds