• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 14
  • 12
  • 12
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La protéine Staufen humaine peut moduler la synthèse polypeptidique

Elvira, George January 1999 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Identification of a quality control check-point for the assembly of mRNA-processing snRNPs / Identifizierung eines Qualitäts-Kontrollmechanismus für die Zusammenlagerung mRNA-prozessierender snRNPs

Paknia, Elham January 2013 (has links) (PDF)
An essential step in eukaryotic gene expression is splicing, i.e. the excision of non-coding sequences from pre-mRNA and the ligation of coding-sequences. This reaction is carried out by the spliceosome, which is a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs) and a large number of proteins. Spliceosomal snRNPs are composed of one snRNA (or two in case of U4/6 snRNPs), seven common Sm proteins (SmD1, D2, D3, B, E, F, G) and several particle-specific proteins. The seven Sm proteins form a ring shaped structure on the snRNA, termed Sm core domain that forms a structural framework of all spliceosomal snRNPs. In the toroidal Sm core domain, the individual Sm proteins are arranged in the sequence SmE-SmG-SmD3-SmB- SmD1-SmD2-SmF from the first to the seventh nucleotide of the Sm site, respectively. The individual positions of Sm proteins in the Sm core domain are not interchangeable. snRNPs are formed in vivo in a step-wise process, which starts with the export of newly transcribed snRNA to the cytoplasm. Within this compartment, Sm proteins are synthesized and subsequently transferred onto the snRNA. Upon formation of the Sm core and further modifications of snRNA, the snRNP is imported into the nucleus to join the spliceosome. Prior to assembly into snRNPs, Sm proteins exist as specific hetero-oligomers in the cytoplasm. The association of these proteins with snRNA occurs spontaneously in vitro but requires the assistance of two major units, PRMT5- and SMN- complexes, in vivo. The early phase of assembly is critically influenced by the assembly chaperone pICln. This protein pre-organizes Sm proteins to functional building blocks and enables their recruitment onto the PRMT5 complex for methylation. Sm proteins are subsequently released from the PRMT5 complex as pICln bound entities and transferred onto the SMN-complex. The SMN complex then liberates the Sm proteins from the pICln-induced kinetic trap and allows their transfer onto the snRNA. Although the principal roles of SMN- and PRMT5 complexes in the assembly of snRNPs have been established, it is still not clear how newly translated Sm proteins are guided into the assembly line. In this thesis, I have uncovered a new facet of pICln function in the assembly of snRNPs. I have shown that newly synthesized Sm proteins are retained at the ribosome upon termination of translation. Their release is facilitated by pICln, which interacts with the cognate Sm protein hetero-oligomers at their site of synthesis on the ribosome and recruits them into the assembly pathway. Additionally, I have been able to show that the early engagement of pICln with the Sm proteins ensures the flawless oligomerization of Sm proteins and prevents any non-chaperoned release and diffusion of Sm proteins in the cytoplasm. In a second project, I have studied the mechanism of U7 snRNP assembly. This particle is a major component of the 3’ end processing machinery of replication dependent histone mRNAs. A biochemical hallmark of U7 is its unique Sm core in which the two canonical Sm proteins D1 and D2 are replaced by so-called “like Sm proteins”. The key question I addressed in my thesis was, how this “alternative” Sm core is assembled onto U7 snRNA. I have provided experimental evidence that the assembly route of U7 snRNPs and spliceosomal snRNPs are remarkably similar: The assembly of both particles depends on the same assembly factors and the mechanistic details are similar. It appears that formation of the U7- or spliceosomal- core specific 6S complex is the decisive step in assembly. / Ein wesentlicher Schritt in der eukaryotischen Genexpression ist das Spleißen, welches nicht-kodierende Sequenzen aus prä-mRNA entfernt und kodierende Sequenzen zusammenfügt. Diese Reaktion wird durch das Spleißosom, einer makromolekularen Maschine, die aus kleinen nucleären Ribonukleoproteinpartikeln (snRNPs) und einer großen Anzahl von Proteinen zusammengesetzt ist, durchgeführt. Spleißosomale snRNPs bestehen aus einer snRNA (oder zwei im Falle von U4/6 snRNPs) und zwei Klassen von Proteinen: Die Sm Proteine SmD1, SmD2, SmD3, SmB, SmE, SmF und SmG finden sich in allen snRNPs und sind daher für allgemeine Funktionen der snRNPs verantwortlich. Dem gegenüber stehen die Partikel-spezifischen Proteinen, die für spezifische Funktionen der individuellen snRNPs verantwortlich sind. Die gemeinsamen Sm Proteine umschließen einen einzelsträngigen Bereich der snRNA (Sm-Bindungsstelle) in einer ringförmigen Struktur und bilden so die Sm-Core-Domäne aus. Diese Domäne stellt das strukturelle Grundgerüst aller spleißosomalen snRNPs dar, wobei die einzelnen Sm Proteine in der Reihenfolge SmE-SmG-SmD3-SmB-SmD1-SmD2-SmF von dem ersten zum siebenten Nukleotid der Sm-Bindungsstelle der snRNA angeordnet werden. Die einzelnen Positionen des Sm Proteine in der Sm core Domäne sind nicht austauschbar. Die Biogenese der snRNPs erfolgt in vivo in einem mehrphasigen Prozess, der mit der Transkription der snRNA und deren Export ins Zytoplasma beginnt. In diesem Kompartiment werden Sm Proteine synthetisiert und anschließend auf die snRNA übertragen. Nach der Bildung der Sm-Core-Domäne und diversen Modifikationen der snRNA erfolgt der Kern Transport und die Integration in das Spleißosom. Vor dem Einbau in snRNPs existieren die Sm Proteine als spezifische Hetero-Oligomere im Zytoplasma. Obwohl die Assoziation dieser Proteine mit snRNA in vitro spontan erfolgt, erfordert dieser Prozess in vivo die Unterstützung von zwei großen makromolekularen Funktionseinheiten, den PRMT5-und SMN-Komplexen. Die frühe Phase der Zusammenlagerung von snRNPs wird maßgeblich durch den PRMT5-Komplex, und hier speziell durch seine pICln-Untereinheit beeinflusst. Dieses Protein fungiert als sogenanntes Assembly-Chaperon, da es die Sm Proteine zu funktionellen Bausteinen zusammenfügt ohne selbst ein snRNP Baustein zu sein. Sm Proteine werden anschließend direkt von pICln als vorgefertigte Einheiten auf den SMN-Komplex übertragen. Der SMN-Komplex befreit die Sm Proteine von einer kinetischen Falle, die durch die Bindung von pICln an Sm Proteinen hervorgerufen wird und ermöglicht deren Transfer auf die snRNA. Obwohl die Wirkungsweise von SMN- und PRMT5-Komplexe bei der Zusammenlagerung von snRNPs in Grundzügen verstanden ist, bleibt es noch unklar, wie neu synthetisierte Sm Proteine Zugang zur Zusammenlagerungs-Maschinerie erhalten. In dieser Arbeit habe ich eine neue Facette der Funktion von pICln bei der Zusammenlagerung von snRNPs aufgedeckt. Ich habe gezeigt, dass neu synthetisierte Sm Proteine nach ihrer Synthese am Ribosom gebunden bleiben. Ihre Freisetzung und Weiterverarbeitung im snRNP Biogeneseprozess wird durch pICln unterstützt. Hierbei bindet das Assembly-Chaperon kognate Sm-Hetero-Oligomere am Ribosom und überführt diese direkt in die folgende Zusammenlagerungsphase am PRMT5-Komplex. Darüber hinaus konnte ich zeigen, dass die frühe Bindung von pICln an Sm-Proteine deren spezifische Oligomerisierung sicherstellt und somit die Freisetzung ins Zytoplasma in freier, nicht Chaperon gebundener Form verhindert. In einem zweiten Projekt, habe ich den Mechanismus der Zusammenlagerung des U7 snRNPs untersucht. Dieses Partikel ist an der Prozessierung des 3’-Endes von Replikations-abhängigen Histon mRNAs beteiligt. Eine biochemisches Merkmal des U7 snRNPs ist ihre einzigartige Sm-Core-Domäne, in der zwei kanonische Sm Proteine durch sogenannte "Sm-like" Proteine ersetzt werden. In meiner Promotion habe ich der grundsätzliche Frage adressiert wie diese "alternative" Sm-Core-Domäne des U7 snRNPs zusammengebaut wird. Ich konnte den experimentellen Nachweis erbringen, dass die Zusammenlagerung des U7 snRNPs und spleissosomalen snRNPs bemerkenswert ähnlich sind. Die Montage beider Teilchen hängt von den gleichen Faktoren ab und die mechanistischen Details sind ähnlich. Es scheint, dass die Ausbildung des 6S Komplexes, welches U7- beziehungsweise spleissosomale snRNPs spezifiziert, der massgebliche Schritt in der Bildung beider Partikel ist.
3

The reaction mechanism of cellular U snRNP assembly

Chari, Ashwin. Unknown Date (has links) (PDF)
Univ., Diss., 2009--Würzburg.
4

Die Funktion des U1snRNPs in der HIV-1-env-Expression

Freund, Marcel. Unknown Date (has links)
Universiẗat, Diss., 2004--Düsseldorf.
5

Fórmula de integración en espacios con la propiedad de continuidad del subdiferencial

Salas Videla, David Sebastián January 2013 (has links)
Ingeniero Civil Matemático / En esta memoria se extiende el resultado de integración de Correa y Hantoute presentado en \cite{Correa1}, que dice que si un espacio de Banach $X$ tiene la propiedad de Radon-Nykod\'ym (RNP), entonces para todo par de funciones $f,g:X\to\Rex$ con $f$ epi-pointed y semicontinua inferior, y tal que $\partial f\subseteq \partial g$, se cumple que existe una constante $c\in\R$ tal que \[ \cco f = \overline. \] Se introduce la noción de funciones integrables, que tienen las condiciones necesarias y suficientes para que la fórmula de integración anterior se cumpla, independiente de la RNP. Además, se definen las funciones cuasi-integrables, que son aquellas funciones $f$ epi-pointed que sólo necesitan para ser integrables que exista un denso $D$ del interior del dominio de $f^*$ donde se satisfaga que \[ \clss = \partial f^*(x^*),\quad\forall x^*\in D. \] Se dan caracterizaciones de la ecuación anterior y luego se define la familia de espacios de Banach donde para toda función $f$ epi-pointed, su conjugada satisface dicha ecuación en un denso del interior de su dominio: Los espacios cuyo dual tiene la propiedad de continuidad del subdiferencial débil ($w$-SCP). Se muestra que esta es la familia de espacios de Banach más grande donde toda función cuasi-integrable es integrable. Se termina la memoria dando varias caracterizaciones de los espacios cuyo dual tiene la $w$-SCP y se plantean algunas conjeturas sobre la estructura de los mismos.
6

Elucidation of structure-function relationships in <i>Methanocaldococcus jannaschii</i> RNase P, a multi-subunit catalytic ribonucleoprotein

Phan, Chau Hong Duc 05 October 2022 (has links)
No description available.
7

An in vitro system for the biogenesis of small nuclear ribonucleoprotein particles / Die Biogenese kleiner nukleärer Ribonukleinprotein Partikel - ein in vitro System

Neuenkirchen, Nils January 2012 (has links) (PDF)
Most protein-encoding genes in Eukaryotes are separated into alternating coding and non-coding sequences (exons and introns). Following the transcription of the DNA into pre-messenger RNA (pre-mRNA) in the nucleus, a macromolecular complex termed spliceosome removes the introns and joins the exons to generate mature mRNA that is exported to the cytoplasm. There, it can be interpreted by ribosomes to generate proteins. The spliceosome consists of five small nuclear ribonucleic acids (snRNAs) and more than 150 proteins. Integral components of this complex are RNA-protein particles (RNPs) composed of one or two snRNAs, seven common (Sm) and a various number of snRNP-specific proteins. The Sm proteins form a ring-structure around a conserved site of the snRNA called Sm site. In vitro, Sm proteins (B/B', D1, D2, D3, E, F, G) and snRNA readily assemble to form snRNPs. In the context of the cell, however, two macromolecular trans-acting factors, the PRMT5 (protein arginine methyltransferases type 5) and the SMN (survival motor neuron) complex, are needed to enable this process. Initially, the Sm proteins in the form of heterooligomers D1/D2, D3/B and F/E/G are sequestered by the type II methyltransferase PRMT5. pICln, a component of the PRMT5 complex, readily interacts with Sm proteins to form two distinct complexes. Whereas the first one comprises pICln and D3/B the second one forms a ring consisting of pICln, D1/D2 and F/E/G (6S). It has been found that pICln prevents the premature interaction of snRNAs with the Sm proteins in these complexes and thus functions as an assembly chaperone imposing a kinetic trap upon the further assembly of snRNPs. PRMT5 catalyzes the symmetrical dimethylation of arginine residues in B/B', D1 and D3 increasing their affinity towards the SMN complex. Finally, the SMN complex interacts with the pICln-Sm protein complexes, expels pICln and mediates snRNP assembly in an ATP-dependent reaction. So far, only little is known about the action of PRMT5 in the early phase of snRNP assembly and especially how the 6S complex is formed. Studies of this have so far been hampered by the unavailability of soluble and biologically active PRMT5 enzyme. The composition of the SMN complex and possible functions of individual subunits have been elucidated or hypothesized in recent years. Still, the exact mechanism of the entire machinery forming snRNPs is poorly understood. In vivo, reduced production of functional SMN protein results in the neurodegenerative disease spinal muscular atrophy (SMA). How specific SMN mutations that have been found in SMA patients cause the disease remains elusive, yet, are likely to interfere with either SMN complex stability or snRNP assembly. The aim of this work was to establish an in vitro system to recapitulate the cytoplasmic assembly of snRNPs. This was enabled by the recombinant production of all PRMT5 and SMN complex components as well as Sm proteins in a combination of bacterial and insect cell expression systems. Co-expression of human PRMT5 and its direct interaction partner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) insect cells resulted for the first time in soluble and biologically active enzyme. Recombinant PRMT5/WD45 formed complexes with Sm protein heterooligomers as well as pICln-Sm protein complexes but not with F/E/G alone. Also, the enzyme exhibited a type II methyltransferase activity catalyzing the mono- (MMA) and symmetrical dimethylation (sDMA) of Sm proteins B, D1 and D3. Two experimental setups were devised to quantitatively analyze the overall methylation of substrates as well as to identify the type and relative abundance of specific methylation types. Methylation of Sm proteins followed Michaelis-Menten kinetics. Complex reconstitutions and competition of the methylation reaction indicate that 6S is formed in a step-wise manner on the PRMT5 complex. The analysis of the methylation type could be applied to deduce a model of sequential MMA and sDMA formation. It was found that large Sm protein substrate concentrations favored monomethylation. Following a distributive mechanism this leads to the conclusion that PRMT5 most likely confers partial methylation of several different substrate proteins instead of processing a single substrate iteratively until it is completely dimethylated. Finally, the human SMN complex was reconstituted from recombinant sources and was shown to be active in snRNP formation. The introduction of a modified SMN protein carrying a mutation (E134K) present in spinal muscular atrophy (SMA) proved that mutated complexes can be generated in vitro and that these might be applied to elucidate the molecular etiology of this devastating disease. / Der Großteil der Protein-kodierenden Gene in Eukaryoten ist in kodierende und nicht-kodierende Regionen unterteilt - sogenannte Exons und Introns. Damit aus einem Gen ein Protein hergestellt werden kann, muss zunächst die genomische DNA im Rahmen der Translation in prä-messenger RNA (prä-mRNA; Boten-RNA) übersetzt werden. Aus dieser prä-mRNA werden anschließend durch einen makromolekularen Komplex (Spleißosom) die Introns entfernt und die kodieren Exons zusammengefügt. Die daraus resultierende gereifte mRNA dient letztendlich den Ribosomen als Vorlage zur Herstellung von Proteinen. Das Spleißosom besteht aus fünf snRNAs (small nuclear ribonucleic acids) und über 150 weiteren Proteinen. Zentrale Komponenten dieses Komplexes sind RNA-Protein Partikel (RNPs), die aus einer bzw. zwei snRNAs, sieben gemeinsamen (Sm) und weiteren snRNP-spezifischen Proteinen bestehen. Die Sm Proteine (B/B', D1, D2, D3, E, F and G) bilden eine Ringstruktur um eine konservierte Sequenz (Sm-site) der snRNA aus. In vitro erfolgt die Ausbildung dieser Struktur spontan. Im zellulären Kontext wird die Zusammenlagerung dieser snRNPs allerdings erst durch zwei makromolekulare, trans-agierende Proteinkomplexe, den PRMT5 und den SMN Komplex, ermöglicht. Zu Beginn interagieren die Sm Proteine als heterooligomere Strukturen bestehend aus D1/D2, D3/B und F/E/G mit der Typ II Methyltransferase PRMT5. pICln, eine Komponente des PRMT5 Komplexes, interagiert mit den Sm Proteinen und bildet zwei spezifische Komplexe aus. Während der erste aus pICln und D3/B besteht, lagern sich im zweiten die Sm proteine D1/D2 und F/E/G mit pICln zu einem Ring zusammen (6S Komplex). Diese Interaktion erzeugt eine kinetische Falle, so dass die Sm Proteine sich nicht mehr spontan an die snRNA anlagern können und somit die snRNP Biogenese verzögert wird. PRMT5 katalysiert die symmetrische Dimethylierung von Argininresten in B/B', D1 und D3, wodurch deren Affinität zum SMN Komplex erhöht wird. Letztendlich assoziert der SMN Komplex mit den zuvor erzeugten pICln-Sm Protein Komplexen, entlässt pICln und ermöglicht im weiteren die Zusammenlagerung von snRNPs in einer ATP-abhängigen Reaktion. Aktuell ist über die Funktion von PRMT5 in der frühen Phase der snRNP Biogenese wenig bekannt. Dies trifft insbesondere auf die Zusammenlagerung des 6S Komplexes zu. Biochemische Untersuchungen waren bis jetzt nahezu unmöglich, da rekombinant hergestelltes Protein entweder unlöslich oder biochemisch inaktiv war. In den vergangenen Jahren wurde viel über die Zusammensetzung des SMN Komplexes sowie über die Funktionen einzelner Untereinheiten herausgefunden aber auch spekuliert. Trotz alledem ist der genaue Mechanismus der snRNP Biogenese noch nahezu unbekannt. In vivo sind verringerte Mengen an funktionalem SMN Protein der Ausschlaggeber für die neurodegenerative Krankheit Spinale Muskelatrophie (SMA). Welchen Effekt Mutationen im SMN Protein haben, die in SMA Patienten festgestellt wurden ist ungewiss. Es ist allerdings zu vermuten, dass diese entweder die Integrität des SMN Komplexes negativ beeinflussen oder störend auf die snRNP Biogenese wirken. Das Ziel dieser Arbeit war es ein in vitro-System zu generieren, um die zytoplasmatische snRNP Biogenese biochemisch zu untersuchen. Dies geschah durch die rekombinante Produktion aller PRMT5 und SMN Komplex Komponenten sowie der Sm Proteine in einer Kombination von bakterieller und Insektenzell-Expression. Durch die Ko-Expression von humanem PRMT5 und dem Interaktionspartner WD45 (WD-repeat domain 45) in Sf21 (Spodoptera frugiperda 21) Insekten Zellen konnte erstmals lösliches und enzymatisch aktives Protein hergestellt werden. Rekombinantes PRMT5/WD45 bildete Komplexe mit heterooligomeren Sm Proteinen sowie pICln-Sm Protein Komplexen, allerdings nicht mit F/E/G. Zusätzlich konnte eine Typ II Methyltransferase Aktivität dadurch nachgewiesen werden, dass die Sm Protein B, D1 und D3 monomethyliert (MMA) und symmetrisch dimethyliert (sDMA) werden können. Zur weiteren Untersuchung wurden zwei experimentelle Ansätze erarbeitet, um die allgemeine Methylierungsaktivität sowie das relative Vorhandensein von Mono- und Dimethylargininen zu bestimmen. Es konnte gezeigt werden, dass die Methylierung der Sm Proteine einer Michael-Menten Kinetik folgt. Die Rekonstitution von PRMT-Sm Protein Komplexen sowie the Methylierungsreaktionen deuten auf eine schrittweise Zusammenlagerung von 6S auf dem PRMT5 Komplex hin. ...
8

Biochemische Rekonstitution und funktionelle Charakterisierung der Zusammenlagerungsmaschinerie spleißosomaler U snRNPs / Biochemical reconstitution and functional characterization of the spliceosomal U snRNP assembly machinery

Englbrecht, Clemens January 2014 (has links) (PDF)
Das Spleißen von prä-mRNAs stellt in der Expression eukaryontischer Gene einen essentiellen Reifungsschritt dar. Erst durch das exakte Entfernen von nicht-kodierenden Introns und Verbinden der kodierenden Exons kann die genetische Information am Ribosom in funktionelle Proteine umgesetzt werden. Spleißen wird durch das Spleißosom katalysiert, welches sich aus den small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, U5 und U6 und einer großen Anzahl weiterer Proteinfaktoren zusammensetzt. Die snRNPs bestehen aus einer Uridin-reichen snRNA, spezifischen und generellen (Sm-)Proteinen. Die Sm-Proteine B/B`, D1, D2, D3, E, F, und G bilden einen heptameren Ring um die sog. Sm-Bindungsstelle der snRNAs. Während die Zusammenlagerung von Sm-Proteinen mit der RNA in vitro spontan ablaufen kann, wird dieser Prozess in vivo von zwei makromolekularen Proteinkomplexen assistiert, die als PRMT5- bzw. SMN-Komplex bezeichnet werden. Der PRMT5-Komplex (bestehend aus PRMT5, WD45 und pICln) agiert in der frühen Phase der Zusammenlagerung. Seine Hauptfunktion ist die symmetrische Dimethylierung der Sm-Proteine und die Stabilisierung von Sm-Proteinkomplexen durch das Chaperon pICln in zwei Intermediaten. Einhergehend mit dieser Aktivität werden auch Aggregation bzw. unspezifische Wechselwirkungen der Sm-Proteine mit RNAs verhindert. In der späten Phase der Zusammenlagerung löst der SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) pICln-Intermediate auf, wobei dieser die Sm-Proteine en bloc übernimmt und sie auf die snRNA überträgt. Während dieser Reaktion wird pICln aus den Komplexen verdrängt. Ein Fehlen des SMN-Proteins, einer Schlüsselkomponente des SMN-Komplexes, führt zur autosomal rezessiven Erbkrankheit `Spinale Muskelatrophie` (SMA) wobei der Schweregrad der Krankheit invers mit der Menge an funktionellem SMN-Protein korreliert. Es wird vermutet, dass eine gestörte snRNP-Biogenese die Ursache der SMA ist. In der vorliegenden Arbeit sollte die U snRNP-Zusammenlagerungsmaschinerie aus rekombinanten Bausteinen rekonstituiert werden und so funktionellen und strukturellen Studien zugänglich gemacht werden. Folgende Resultate wurden in dieser Arbeit erhalten: 1) Im ersten Teil der Arbeit wurde eine experimentelle Strategie etabliert, welche die Rekonstitution des humanen SMN-Komplexes aus rekombinanten Untereinheiten erlaubte. Entscheidend hierfür war die Definition von Subkomplexen aufgrund einer Protein-Interaktionskarte. Die Subkomplexe konnten separat hergestellt und anschließend zum Gesamtkomplex vereinigt werden. 2) Die erfolgreiche Etablierung eines rekonstitutiven Systems erlaubte eine detaillierte biochemische Charakterisierung des SMN-Komplexes. Es konnte gezeigt werden, dass der rekombinante Komplex alle für die Biogenese von U snRNPs nötigen Schritte bewerkstelligen konnte. Dies schließt sowohl die Übernahme der Sm-Proteine aus den pICln-Intermediaten als auch das Verdrängen des Chaperons pICln und die Übertragung der Sm-Proteine auf die snRNAs ein. 3) Durch die Reduzierung des SMN-Gesamtkomplexes um Gemin3-5 auf einen SMN-Pentamer konnte dieser als ein funktioneller Kernbereich identifiziert werden, der die einzelnen Schritte der U snRNP-Biogenese vergleichbar mit dem gesamten Komplex bewerkstelligen konnte. Zudem agierte dieser reduzierte Komplex als notwendiger und ausreichender Spezifitätsfaktor der RNP-Zusammenlagerung. 4) Das rekombinante System ermöglichte erstmals SMN-Komplexe mit SMA-pathogenen Mutationen herzustellen und einer eingehenden funktionellen und strukturellen Untersuchung zu unterziehen. Die detaillierte Analyse der SMA-verursachenden Punktmutation SMN(E134K) offenbarte spezifische Defekte im Zusammenlagerungsprozess und damit Einblicke in die Pathophysiologie der Krankheit. Mit der im Rahmen dieser Arbeit etablierten Rekonstitution des rekombinanten SMN-Komplexes wurde die Grundlage für die detaillierte biochemische und strukturbiologische Untersuchung der Zusammenlagerungsmaschinerie spleißosomaler U snRNPs gelegt. Dieses experimentelle System wird auch bei der Aufdeckung der biochemischen Defekte hilfreich sein, die zur neuromuskulären Krankheit SMA führen. / The splicing of pre-mRNAs is an essential step in the expression of eukaryotic genes. The precise excision of non-coding introns and joining of coding exons ensures that the genetic information can be translated into functional proteins at the ribosome. The spliceosome, which catalyzes the splicing reaction, is composed of the small nuclear ribonucleoprotein particles (snRNPs) U1, U2, U4, U5 and U6 and a large number of additional proteins. These RNPs consist of a uridine-rich snRNA, individual and common (Sm) proteins. The Sm proteins, termed B/B', D1, D2, D3, E, F and G form a heptameric ring around the so-called Sm-site of snRNAs and thus form a structural framework of all snRNPs termed Sm core. Although the assembly of the Sm core occurs spontaneously in vitro, this process is assisted by two macromolecular protein complexes in vivo referred to as PRMT5 and SMN complexes. The PRMT5 complex (consisting of PRMT5, WD45 and pICln) acts in the early phase of assembly. Its main functions are the symmetric dimethylation of Sm proteins and the stabilization of Sm protein complexes within two intermediates via the chaperone pICln. Along with this activity also aggregation and non-specific interactions of Sm proteins with RNAs are prevented. In the late phase of assembly, the SMN complex (consisting of SMN, Gemins 2-8 and unrip) binds to pICln-Sm intermediates, thereby taking over the Sm proteins en bloc and transfers them onto the snRNA. During this reaction pICln is displaced from the complexes. Reduced levels of the SMN protein are associated with the autosomal recessive disease `spinal muscular atrophy` (SMA) and the severity of the disease correlates inversely with the amount of functional SMN protein. It is therefore believed that the impaired biogenesis of snRNP is directly linked to the etiology of the disease. The aim of this thesis was to reconstitute the SMN complex from recombinant sources, thereby providing the basis for mechanistic and structural studies of this unique assembly machinery. The following results were obtained in the context of this study: 1) An experimental strategy was established, which allowed the reconstitution of the human SMN complex from recombinant subunits. To accomplish this goal, defined subcomplexes were identified based on a previously published protein interaction map. Components of these subcomplexes were co-expressed, purified and could eventually be combined to the complete SMN complex. 2) The successful establishment of a reconstitution system allowed the detailed biochemical characterization of the SMN complex. It was shown that the recombinant complex executed all necessary steps in the biogenesis of U snRNPs. This included proper transfer of Sm proteins from the pICln intermediates, the displacement of the chaperone pICln and the transfer of Sm proteins onto snRNAs. 3) The reconstitution of a SMN complex lacking Gemin3-5 allowed the definition of a minimal functional core, which was sufficient to commit all individual steps of the U snRNP biogenesis in vitro. This minimal complex was also necessary and sufficient to confer specificity of the assembly reaction. 4) The recombinant system established in this thesis further opened the possibility to analyze mutant SMN proteins implicated in SMA. The investigation of the SMA-causing missense mutation SMN(E134K) revealed specific defects in the assembly process, shedding light on the etiology of the disease. The reconsitutive system established in this thesis provides the basis for a detailed biochemical and structural investigation of the assembly machinery. It will also help to uncover biochemical defects directly linked to the neuromuscular disorder SMA.
9

Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders / Identifikation des mRNA-assoziierten TOP3β-TDRD3-FMRP (TTF) -Komplex und seine Bedeutung für neurologische Störungen

Stoll, Georg January 2015 (has links) (PDF)
The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called “mRNP- code”. In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early“ mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases. / Die Umwandlung der genetischen Information in Proteine erfolgt über Boten-RNA (mRNA) -Intermediate. Diese werden in Eukaryonten durch die RNA-Polymerase II gebildet und nach diversen Prozessierungs-Schritten der Translationsmaschinerie zugänglich gemacht. Während man früher davon ausging, dass die Genexpression primär auf der Ebene der Transkription reguliert wird, ist heute klar, dass post- transkriptionelle Prozesse einen ebenso wichtigen Beitrag hierzu leisten. Neben nicht-kodierenden RNAs und Metaboliten tragen insbesondere RNA- Bindungsproteine zur Kontrolle dieses Vorgangs bei. Diese finden sich in unterschiedlichen Kombinationen auf den mRNAs zusammen und bilden dadurch den sog. „mRNP-Code“ aus. Im Rahmen dieser Dissertation wurde eine bislang unbekannte Komponente des mRNP-Codes identifiziert und charakterisiert. Es handelt es sich dabei um einen hetero-trimeren Komplex, welcher aus dem Tudor Domänen Protein 3 (TDRD3) dem Fragilen X Mentalen Retardations-Protein (FMRP) sowie der Topoisomerase III beta (TOP3β) besteht. Aufgrund seiner Zusammensetzung wurde dieser TTF (TOP3β-TDRD3-FMRP) -Komplex genannt. In der vorliegenden Arbeit konnte der Nachweis geführt werden, dass sämtliche Komponenten des TTF-Komplexes zwischen Zellkern und Cytoplasma pendeln, unter Normalbedingungen jedoch vornehmlich im Cytoplasma lokalisiert sind. Des Weiteren ließ sich eine Assoziation des TTF-Komplexes mit mRNAs nachweisen, die zwar vollständig prozessiert, jedoch noch nicht Teil der produktiven Phase der Translation sind. Der TTF-Komplex ist somit eine Komponente „früher“ mRNPs. Die Rekrutierung des TTF-Komplexes an definierte mRNPs wird nicht durch Bindung an spezifische mRNA-Sequenzelemente bedingt, sondern basiert auf einer Interaktion mit dem sog. Exon Junction Complex (EJC), welcher im Kontext des pre-mRNA Spleißens auf die mRNA geladen wird. Hierbei spielt TDRD3 als Adapter zwischen dem EJC, FMRP und TOP3β die entscheidende Rolle. Präliminäre Experimente legen darüber hinaus den Schluss nahe, dass epigenetische Markierungen im Promotor-Bereich distinkter Gene von entscheidender Bedeutung für den Transfer des TTF-Komplexes auf dessen Ziel-mRNAs sind. Einen wichtigen ersten Hinweis auf die potentielle Funktion des TTF-Komplexes im Kontext des mRNA Metabolismus erbrachte die Beobachtung, dass TOP3β in der Lage ist RNA katalytisch umzusetzen. Dieser Befund lässt in Verbindung mit den bereits beschriebenen Aktivitäten von FMRP vermuten, dass der TTF-Komplex die Translation gebundener mRNAs kontrolliert. Zusätzlich zu seiner Rolle im mRNA Metabolismus ist der TTF-Komplex auch aus humangenetischer Sicht hoch interessant. So konnte in Zusammenarbeit mit finnischen und US-amerikanischen Forschern gezeigt werden, dass neben FMRP, einem bekannten Krankheitsfaktor neurokognitiver Syndrome, auch TOP3β mit neurologischen Entwicklungsstörungen assoziiert ist. Das Verständnis der Funktion des TTF-Komplexes im mRNA Metabolismus könnte daher wichtige Einblicke in die Etiologie dieser Krankheiten liefern.
10

Strukturbiologische Untersuchungen zur Chaperone-vermittelten Zusammenlagerung spleißosomaler U-snRNPs / Structural studies on the chaperone-assisted assembly of spliceosomal U snRNPs

Pelz, Jann-Patrick January 2015 (has links) (PDF)
Durch die Spleißreaktion werden nicht-kodierende Sequenzelemente (Introns) aus eukaryotischen Vorläufer-mRNAs entfernt und die kodierenden Sequenzelemente (Exons) miteinander zu einem offenen Leserahmen verbunden. Dieser zentrale Prozessierungsschritt während der eukaryotischen Genexpression wird durch das Spleißosom katalysiert, das aus den vier kleinen nukleären Ribonucleoproteinpartikeln (snRNPs) U1, U2, U4/U6 und U5, sowie einer Vielzahl weiterer Proteinfaktoren gebildet wird. Alle snRNPs besitzen eine gemeinsame ringförmige Kernstruktur, die aus sieben gemeinsamen Sm-Proteinen (SmB/B‘-D1-D2-D3-E-F-G) besteht, die ein einzelsträngiges Sequenzmotiv auf der snRNAs binden. Während sich diese, als Sm-Core-Domäne bezeichnete Struktur in vitro spontan ausbilden kann, erfolgt die Zusammenlagerung in vivo in einem assistierten und hochregulierten Prozess. Dieser ist abhängig von insgesamt mindestens 12 trans-agierenden Faktoren, die in den PRMT5- und SMN-Komplexen organisiert sind. Der PRMT5-Komplex agiert in der frühen Phase der Zusammenlagerung, indem er die Sm-Proteine durch die Untereinheit pICln rekrutiert und die symmetrische Methylierung von Argininresten in den C terminalen Schwänzen von SmB/B‘, SmD1 und SmD3 katalysiert. Als Resultat dieser frühen Phase befinden sich die Sm-Proteine SmD1-D2-E-F-G und SmB/B‘-D3 in zwei getrennten und durch pICln organisierten Komplexen. Während SmB/B‘-D3-pICln am PRMT5-Komplex gebunden bleibt, existiert der zweite Komplex als freies Intermediat mit einem Sedimentationskoeffizienten von 6S. Diese Intermediate können nicht mit RNA assoziieren, sodass für die Fortsetzung des Zusammenlagerungsprozesses die Interaktion der Sm-Proteine mit pICln aufgelöst werden muss. Dies geschieht in der späten Phase der Sm-Core-Zusammenlagerung, in der die Sm-Proteine vom SMN-Komplex (bestehend aus SMN, Gemin2-8 und unrip) übernommen werden und pICln dissoziiert wird. Dadurch werden die Sm-Proteine für ihre Interaktion mit der snRNA aktiviert und können auf die Sm-Bindestelle transferiert werden, wodurch die Formierung des Sm-Core abgeschlossen wird. Im Rahmen dieser Arbeit konnten mit Hilfe einer Kombination röntgenkristallographischer und elektronenmikroskopischer Methoden zwei wichtige Intermediate dieses Zusammenlagerungs-prozesses strukturbiologisch charakterisiert werden. Bei diesen Intermediaten handelt es sich um den 6S-Komplex, sowie um ein Sm-Protein-Transferintermediat mit einem Sedimentations-koeffizienten von 8S. In diesem ist der 6S-Komplex an zwei zentrale Untereinheiten des SMN-Komplexes (SMN und Gemin2) gebunden, während pICln den Komplex noch nicht verlassen hat. Der 8S-Komplex stellt daher ein „gefangenes“ Intermediat zwischen der frühen und späten Phase der Zusammenlagerung dar. Zunächst gelang es eine erste Kristallform des rekombinant hergestellten 8S-Komplexes zu erhalten, die jedoch keine Strukturlösung erlaubte. Durch eine kombinierte Optimierung der Kristallisationsbedingung und der verwendeten Proteine wurde eine weitere ähnliche Kristallform erhalten, mit der die Kristallstruktur des 8S-Komplexes gelöst werden konnte. Die Kristallisation des 6S-Komplexes gelang im Anschluss auf Basis der Hypothese, dass Kristalle beider Komplexe aufgrund der kompositionellen Verwandtschaft zwischen 6S und 8S auch Ähnlichkeiten in der Architektur ihrer Kristallgitter aufweisen könnten. Daher wurden innerhalb von pICln gezielt Aminosäuren substituiert, die sich innerhalb von Kristallkontakten der 8S-Kristalle befanden und konformationell eingeschränkt waren. Mit entsprechend rekonstituierten 6S-Präparationen konnten dann zwei Kristallformen erzeugt werden, die eine Strukturlösung des 6S-Komplexes ermöglichten. Durch die Kristallstruktur des 6S-Komplexes konnte für pICln eine strukturelle Mimikry der Sm-Proteine identifiziert werden. Diese ermöglicht eine Bindung der Sm-Proteine und eine frühzeitige topologische Organisation des Sm-Pentamers D1-D2-F-E-G in einer geschlossenen hexameren Ringstruktur. Die Kristallstruktur des 8S-Komplexes zeigt, wie der SMN-Komplex über Gemin2 an das Sm-Pentamer bindet. In Kombination mit einer EM-Struktur des 8S-Komplexes gelang es weiterhin, einen plausiblen Mechanismus für die Elimination von pICln und die Aktivierung der Sm-Proteine für die snRNA-Bindung zu formulieren. Somit konnten diese Arbeiten zu einem besseren Verständnis der Funktionen von trans-agierenden Faktoren bei Zusammenlagerung von RNA-Protein-Komplexen in vivo beitragen. / Splicing is the process in which non-coding sequence elements (introns) are removed from eukaryotic pre-mRNAs and coding sequence elements (exons) are linked to an open reading frame. This central step in eukaryotic gene expression is catalyzed by the spliceosome, which is composed of the four small nuclear Ribonucleoproteins (snRNPs) U1, U2, U4/U6, U5 and a large number of additional protein factors. The snRNPs possess a common ring-shaped core structure that is formed by the seven Sm proteins (SmB/B’-D1-D2-D3-E-F-G) around a single-stranded sequence (Sm site) of the snRNAs. While this so-called Sm core domain forms spontaneously in vitro, its assembly is a highly regulated and assisted process in vivo. It is dependent on the action of at least 12 trans-acting factors which are organized in the PRMT5 and SMN complexes. The PRMT5 is active in the early phase of assembly and recruits the Sm proteins via its pICln subunit and catalyzes the symmetrical di methylation of arginine residues in the C-terminal tails of SmB/B’, SmD1 and SmD3. As a result of the early phase the Sm proteins SmD1-D2-E-F-G and SmB/B’-D3 are organized by pICln in two distinct complexes. While SmB/B’-D3 remains bound to the PRMT5 complex, the second complex exists as a free intermediate with a sedimentation coefficient of 6S. These intermediates cannot associate with RNA and the interaction of the Sm proteins with pICln has to be resolved for the assembly process to be continued. This happens in the late phase of Sm core assembly in which the Sm proteins are taken over by the SMN complex and pICln is dissociated. Afterwards the Sm proteins can be transferred onto the Sm site of the snRNA and the Sm core is formed. As part of this thesis two key intermediates of this assembly process could structurally be characterized by a combination of crystallographic and electron microscopic methods. These intermediates comprise the 6S complex and an Sm protein transfer-intermediate with a sedimentation coefficient of 8S. In this 8S complex the 6S complex is bound to two central subunits of the SMN complex (SMN and Gemin2) while pICln is still associated with the Sm proteins. Hence, this complex represents a trapped intermediate between the early and late phase of assembly. In the beginning a first crystal form of a recombinantly prepared 8S complex was obtained that did not allow the solution of the structure. By a combined optimization of the crystallization condition and the proteins a further similar crystal form was obtained that allowed for the solution of the 8S crystal structure. The crystallization of the 6S complex could successfully be accomplished based on the hypothesis that the lattices of crystals of both complexes might show an architectural similarity because of the similar composition of the complexes. Hence, amino acids of pICln that were conformationally restricted within crystal contacts of the 8S crystals were targeted for substitution to alanine. 6S preparations reconstituted with these proteins yielded two new crystal forms that allowed for the structure solution of the 6S complex. Based on the crystal structure of the 6S complex a structural mimicry of Sm proteins by pICln was revealed. This enables binding of the Sm proteins by pICln which is the basis for an early topological organisation of the Sm Pentamer D1-D2-F-E-G within a closed hexameric ring structure. The crystal structure of the 8S complex revealed how the SMN complex binds to the Sm Pentamer via its Gemin2 subunit. In combination with an EM structure of the 8S complex both structures revealed a plausible mechanism for the elimination of pICln and the activation of the Sm proteins for snRNA binding. The solution of both structures helps to better understand the function of trans-acting factors during the in vivo assembly of RNA-protein complexes.

Page generated in 0.4032 seconds