L’utilisation de composites à matrice thermodurcissable et fibres continues est en constante progression dans le secteur aéronautique, ferroviaire, et automobile. Afin d’améliorer les composites obtenus, notamment leur résistance à l’impact et leur conductivité électrique, des nanocharges organiques ou inorganiques peuvent être ajoutées. Les nanotubes de carbone (CNT) font partie des candidats les plus prometteurs pour le renforcement de composites à multi-échelle. Cependant, il s’avère difficile de contrôler la dispersion, la répartition et l’orientation des CNT, après les avoir mélangés aux prépolymères. Une nouvelle stratégie d’insertion des CNT dans un composite consiste à combiner des fibres de CNT avec des fibres de carbone. L’orientation et l’organisation structurelle des CNT au sein de la fibre permettent d’obtenir d’excellentes propriétés mécaniques et électriques. Dans notre étude, les propriétés de fibres contenant exclusivement des CNT, obtenues par direct spinning, ont été comparées à celles de fibres de carbone (non-ensimées, ensimées, et CNT en surface). Différentes interfaces entre les fibres de CNT, fibres de carbone et deux types de matrices époxy (de TG très différentes) ont été générées et testées par des essais de fragmentation de fibre dans la matrice. La contrainte de cisaillement interfaciale fibre/matrice a été évaluée afin de déterminer l’influence des diverses fibres et ensimages sur les performances mécaniques de composites à matrice organique et à fibres continues. En outre, la nature de l’adhésion et la qualité de l’interphase entre la matrice et la fibre ont été caractérisées par plusieurs techniques d’analyses et d’observations à multi-échelles. / Nowadays, polymer-matrix composites reinforced with carbon fibers are increasingly used in the whole transport sector (aerospace, automotive and railway industries). However, the obtained parts still suffer from low impact resistance and low damage tolerance. To improve these properties, the matrix precursors have to be combined with organic or inorganic compounds to lead to multi-phased matrices. Among them, carbon nanotubes (CNT) are especially promising for targeting multi-scale reinforcement. Since high quality of the parts are required, continuous-fibers-reinforced composites can be produced by resin transfer molding (RTM) which also offers a reduced cost if compared with high temperature- and high pressure-based processes. However, RTM requires a very low viscosity of the polymer precursors and CNT-filled precursors are far too viscous to be injected on dry performs. In addition, this strategy does not allow for a control of the CNT location and orientation in the final part. In this study, innovative ways have been developed to insert CNT in the preform with local positioning and defined orientation. Deliveries of CNT in the matrix, from a neat carbon multi-nanotubes fiber produced by direct spinning, or from a CNT grown on carbon fiber were investigated in two types of epoxy matrices (with very different TG). Different polymer matrix/fiber interfaces have been generated using neat carbon multi-nanotubes fiber, CNT grown on carbon fiber and conventional carbon fiber, with or without sizing. A fine mechanical characterization of various fibers and particularly the measurement of single fiber interfacial properties have been performed in order to determine mechanical performance of continuous fiber reinforced composites. In addition, the nature of adhesion and quality of matrix/fiber interface have been fully evaluated by different multi-scale analyses and suitable microstructural observations.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0039 |
Date | 26 March 2014 |
Creators | Lutz, Vincent |
Contributors | Lyon, INSA, Gérard, Jean-François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds