Return to search

Sekundärnutzung deutscher Medikationsdaten in internationalen Studien unter Wahrung der semantischen Bedeutung

Elektronisch verfügbare Daten aus der Gesundheitsversorgung, sogenannte Real-World Data (RWD), gewinnen zunehmend an Bedeutung für die Forschung, insbesondere in der Pharmakovigilanz und der Arzneimittelsicherheit. Die Schaffung von kollaborativen Forschungsnetzwerken, wie beispielsweise Observational Health Data Sciences and Informatics (OHDSI) oder European Health Data and Evidence Network (EHDEN) stoßen auf positive Resonanz, um die Potenziale von RWD zu nutzen und die Reproduzierbarkeit und Verlässlichkeit von Forschungsergebnissen retrospektiver Beobachtungsstudien zu verbessern. Eine Beteiligung deutscher Universitätskliniken mit RWD der stationären Versorgung fehlt bisher, vor allem weil die qualitativen Eigenschaften der Medikationsdaten aktuell eine Hürde darstellen. In dieser Arbeit wird daher untersucht, wie die Sekundärnutzung von Medikationsdaten der klinischen Versorgung in retrospektiven Beobachtungsstudien in internationalen Forschungsgemeinschaften am Beispiel von OHDSI unter Wahrung der semantischen Bedeutung ermöglicht werden kann. Initial wird ein Scoping Review durchgeführt, um zu ermitteln, wo die Schwerpunkte der Nutzung des Datenmodells Observational Medical Outcomes Partnership (OMOP) derzeit liegen. Es werden die Anforderungen an die Daten in OMOP seitens der Forschungsgemeinschaft OHDSI ermittelt und mit dem IST-Zustand der Medikationsverordnungen am Beispiel des Universitätsklinikum Carl Gustav Carus Dresden (UKD) abgeglichen. So werden die Inhibitoren identifiziert, welche im Widerspruch zu den Anforderungen stehen. Korrektive Maßnahmen zur Reduktion der Inhibitoren werden konzipiert, umgesetzt und anschließend quantitativ und qualitativ bewertet. Zudem untersucht die Arbeit, wie eine notwendige Transparenz möglicher, verbleibender Limitierungen gewährleistet werden kann. Das durchgeführte Scoping Review zeigt eine über die vergangenen Jahre stetig zunehmende Bedeutung des Datenmodells OMOP für die Durchführung von Studien unter Verwendung von Daten aus mehreren Ländern. In Deutschland fokussiert sich die Forschung im Kontext OMOP bislang auf die Betrachtung von Trends, des Datentransfers, Mappings und der Entwicklung von Konzepten. Eine aktive Beteiligung an der Durchführung von Studien mit medizinischen Fragestellungen unter Nutzung von OMOP findet aktuell nicht statt. Zur Verwendung von Medikationsverordnungen in OMOP müssen die Daten strukturiert und unter Verwendung von internationalen Terminologien wie ATC und RxNorm vorliegen. Allerdings zeigt eine Analyse über mehrere Standorte in Deutschland, dass Medikationsverordnungen überwiegend unstrukturiert und ohne belastbare Zuordnung standardisierter, internationaler Klassifikationen dokumentiert werden. Dieses Ergebnis bestätigt sich auch bei der Untersuchung der Medikationsverordnungen des UKD der Jahre 2016 bis 2020. Die in dieser Arbeit entwickelten und durchgeführten Maßnahmen wurden abgeleitet aus der Teilnahme an einem Pilotprojekt der European Medicines Agency (EMA) und fokussieren auf der Verbesserung der Datenstruktur sowie der Überführung der Medikationsverordnungen nach RxNorm. So konnte der Grad der Klassifizierung der Medikationsverordnungen des UKD unter Verwendung der Standard-Terminologie RxNorm von initial 0% auf 66,39% erhöht werden. Des Weiteren wird durch eine interaktive Visualisierung der Datenstruktur und des Grades der Überführbarkeit von ATC Codes nach RxNorm eine Transparenz der Ergebnisse geschaffen. Die Beantwortung aller in dieser Arbeit gestellten Forschungsfragen schafft die Voraussetzung, um zukünftig an retrospektiven Beobachtungsstudien der OHDSI Forschungsgemeinschaft teilzunehmen zu können. Die semantische Bedeutung der Medikationsverordnungen, auch unter Verwendung internationaler Terminologien wie RxNorm, bleibt dabei gewahrt. Zusätzliche Transparenz kann Forschenden und Versorgenden helfen, die Datenqualität im Sinne der Strukturiertheit der Medikationsverordnungen am UKD in Zukunft bereits zum Zeitpunkt der Entstehung zu verbessern.:Zusammenfassung V
Abstract VII
Symbole und Abkürzungen XV
1 Einleitung 1
1.1 Motivation 1
1.2 Offene Herausforderungen 5
1.3 Ziele und Fragestellungen der Arbeit 7
1.4 Struktur der Arbeit 8
2 Hintergrund 9
2.1 Datenintegrationszentrum 9
2.2 Medizininformatik Initiative Kerndatensatz 10
2.3 OMOP Common Data Model 12
2.4 ATHENA und Standardisierte Vokabulare 14
2.5 OHDSI ETL Werkzeuge 14
2.6 OHDSI Data Quality Dashboard 15
2.7 Relevante Terminologien 17
2.7.1 Die Anatomisch-Therapeutisch-Chemische (ATC) Klassifikation 17
2.7.2 RxNorm 19
3 Materialien und Methoden 21
3.1 Material 21
3.1.1 Verwendete Daten 21
3.1.2 Datentransfer 25
3.1.3 Infrastruktur 27
3.2 Literaturrecherche 28
3.2.1 Identifikation von Publikationen 29
3.2.2 Einschluss und Ausschluss von Publikationen 29
3.2.3 Kategorisierung von Publikationen 30
3.3 Anforderungsanalyse 31
3.3.1 Anforderungen seitens des Datenmodell OMOP 32
3.3.2 Analyse Studienprotokolle von OHDSI Studien 32
3.4 Identifikation von Inhibitoren 35
3.4.1 Stichprobenanalyse von Routinedaten an MIRACUM Standorten 35
3.4.2 Systematische Analyse der Medikationsdaten am UKD 36
3.5 Maßnahmen zur Reduktion der Inhibitoren 37
3.5.1 Maßnahmen am Beispiel einer EMA Studie 38
3.5.2 Maßnahmen - Datenstruktur 40
3.5.3 Maßnahmen - Terminologie 44
3.6 Bewertung der Maßnahmen 49
3.7 Schaffung von Transparenz 52
4 Ergebnisse 55
4.1 Ergebnisse Literaturrecherche 55
4.1.1 Allgemeine Übersicht 56
4.1.2 Fachliche Themen 57
4.1.3 Zeitliche Entwicklung 60
4.1.4 Geografische Verteilung 61
4.1.5 Überblick der Publikationen deutscher Universitäten 63
4.1.6 Zusammenfassung der Ergebnisse der Literaturrecherche 68
4.2 Soll Zustand gemäß Anforderungsanalyse 68
4.2.1 Anforderungen seitens OMOP Datenmodell 69
4.2.2 Anforderungen OHDSI Netzwerkstudien 71
4.2.3 Zusammenfassung der Ergebnisse der Anforderungsanalyse 73
4.3 Identifizierte Inhibitoren 73
4.3.1 Ergebnisse der Stichprobenanalyse 73
4.3.2 Ergebnisse der systematischen Analyse 75
4.3.3 Zusammenfassung der identifizierten Inhibitoren 76
4.4 Ergebnisse der Reduktionsmaßnahmen 76
4.4.1 Ergebnisse der Maßnahmen am Beispiel einer EMA Studie 77
4.4.2 Ergebnisse der Maßnahmen - Datenstruktur 79
4.4.3 Ergebnisse der Maßnahmen - Terminologie 88
4.4.4 Zusammenfassung der Ergebnisse der Maßnahmen 95
4.5 Ergebnisse der Bewertung 95
4.5.1 Ergebnisse der qualitativen Bewertung 95
4.5.2 Ergebnisse der quantitativen Bewertung 97
4.5.3 Zusammenfassung der Ergebnisse der Bewertung 99
4.6 Ergebnisse zur Transparenz 100
4.6.1 Transparenz Datenstruktur 101
4.6.2 Transparenz Terminologie 102
4.6.3 Zusammenfassung der Ergebnisse zur Transparenz 104
5 Diskussion 105
5.1 Allgemein 105
5.2 Stärken 110
5.3 Limitierungen 114
5.4 Ausblick 116
Literaturverzeichnis 138
Abbildungsverzeichnis 140
Tabellenverzeichnis 142
A Anhang: Quellcode Readme 143
B Anhang: drug-exposure Tabelle - Wiki Dokumentation 149
C Anhang: Studienprotokoll EMA Studie 151
D Anhang: Medikationsverordnungen ATC Codes Strukturiertheit 163
E Anhang: ATC-GM Vokabular 181
F Screenshots DQD Dashboard 183
Erklärung zur Eröffnung des Promotionsverfahrens 185
Bestätigung über Einhaltung der aktuellen gesetzlichen Vorgaben 189

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89102
Date17 January 2024
CreatorsReinecke, Ines
ContributorsSedlmayr, Martin, Menk, Mario, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0032 seconds