Submitted by Santos Davilene (davilenes@ufba.br) on 2017-05-31T21:46:52Z
No. of bitstreams: 1
Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:05:21Z (GMT) No. of bitstreams: 1
Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Made available in DSpace on 2017-06-07T11:05:21Z (GMT). No. of bitstreams: 1
Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5) / Em um anel R, o conjunto de todos os elementos quaserregulares determina o,
assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto
semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor).
Identifer | oai:union.ndltd.org:IBICT/oai:192.168.11:11:ri/22836 |
Date | 18 February 2016 |
Creators | Matos, Márcia Graci de Oliveira |
Contributors | Lobão, Thierry Corrêa Petit, Lobão, Thierry Corrêa Petit, Sica, Carmela, Souza, Manuela da Silva, Veloso, Paula Murgel, Ferraz, Raul Antonio |
Publisher | Instituto de Matemática. Departamento de Matemática, Doutorado em Matemática UFBA/UFAL, UFBA, brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFBA, instname:Universidade Federal da Bahia, instacron:UFBA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds