Linearity enhancement, especially within the front end of a wireless receiver IC design, is highly desirable since it allows the front-end to withstand strong interferers from co-existing communication standards or other wireless radiators. We propose an interferer suppression method based on feed-forward cancellation that uses an injectionlocked oscillator (ILO) to extract the interferer from the incident spectrum. The technique is expected to be useful in environments where a strong narrowband interferer appears along with a wideband desired signal, such as ultra-wideband (UWB) and emerging cognitive-radio applications. The ILO is further embedded within a phase-locked loop which provides several advantages including ILO center frequency self tuning and automatic phase alignment between the main signal path and the auxiliary path. An IC that uses this approach is implemented in a UMC 0.18[mu]m RFCMOS process. In measurement, the chip demonstrates 20dB suppression for phase and frequency modulated interferers while maintaining around 18dB power gain and noise figure below 5dB, measured with an off-chip balun for the desired signal. Techniques for canceling amplitude modulated interferers, though not included in the integrated circuit, were also demonstrated with an off chip amplitude control loop. Over 20dB rejection was obtained with AM interferers with properly scaled envelop signal applied to the ILO bias port. A second LNA was connected in cascade with the system to emulate the input stage of a down-conversion mixer and the cascaded P1dB was improved over 16dB with cancellation on. Gain compression above 13dB was also observed when auxiliary path was disabled, at the same input level as the P1dB with cancellation applied. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17986 |
Date | 24 September 2012 |
Creators | Wang, Xin, 1971- |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0073 seconds