In order to realize the convergence of the optical infrastructure of fixed and mobile access networks, the objective of this thesis is to study the solutions for distributing native radio carriers through typical optical access networks.The first Part describes the contexts and the main physical properties of the optical and radio access networks: from nowadays deployed Fiber To The Home (FTTH) systems, and their expected evolutions, to the current radio system Universal Mobile Telecommunications System (UMTS) towards the expected requirements of modern mobile radio systems. This allows to settle the optical environment in which the Radio over Fiber(RoF)-functionalities will have to be integrated, and to know on which radio systems'figures of merits to focus on when implementing it. The second Part shows the benefit and possibilities of re-using the optical infrastructure of the fixed access networks for distributed radio systems. Then a review of the analog and digital RoF techniques is proposed, and their feasibility of integration into legacy FTTH systems is discussed. The third part deals with the computing and simulations of an analog RoF-system where the optical link is either passive or optically pre-amplified, and even boosted. The goal is to provide numerical results to the practical lab. results of the second half of the fourth part where the Signal to Noise Ratio (SNR) matters. Therefore successively formal expressions, numerical results for simple 2-tone signals and more realistic UMTS signals are considered. The fourth and last part deals with the obtained practical results. These can be split into two main categories : Error Vector Magnitude (EVM)-oriented results where an Avalanche Photo-Detector (APD) is used for legacy and extended-reach PON architectures using a direction shared Semiconductor Optical Amplifier (SOA) ; and an Adjacent/Alternate Channel power Leakage Ratio (ACLR)-driven part where the focus is seton a very critical figure of merit of radio systems, especially in the downlink. The latter part turned out to be mandatory and prevailing over the initially considered EVM concerns. Hence several RoF architectures, compatible with PONs, are introduced in order to overcome the non-linearities undergone by the RoF-signals, induced by the chromatic dispersion of the PON's fiber and the laser chirp, and degrading the ACLR performances
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00665650 |
Date | 08 June 2011 |
Creators | Frank, Florian |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0013 seconds