Nesse trabalho foram produzidas nanopartículas (NPs) de Gd2O3 e Er2O3 para aplicação como radiossensibilizadores em feixes de radioterapia. Elas foram sintetizadas no Laboratório de Interações Hiperfinas do IPEN pelo método da decomposição térmica e caracterizadas utilizando difração de raios-X, para verificar a estrutura cristalina, microscopia eletrônica de transmissão, para obter informações sobre forma, tamanho e distribuição de tamanho, análise por ativação neutrônica, por meio da qual foi possível determinar a pureza das amostras e calcular a concentração de gadolínio e érbio. Medições de magnetização e de espectroscopia de correlação angular γ-γ perturbada (PAC) foram realizadas a fim de estudar o comportamento magnético e a interação quadrupolar das partículas, respectivamente. Os resultados da caracterização mostram a formação de uma estrutura cristalina do tipo bixbyite, com aproximadamente 5 nm de diâmetro e estreita distribuição de tamanho, para as amostras pós-síntese. A determinação da massa de terra-rara em cada amostra foi importante para realizar a normalização nas medições de susceptibilidade magnética, tornando possível a visualização de um grande aumento na magnetização abaixo de 30 K, nas amostras pós-síntese, o que não é observado em partículas maiores, além de um aumento no momento magnético efetivo das NPs em relação aos respectivos bulks e uma mudança na temperatura de ordenamento antiferromagnético para o Er2O3. Os resultados da espectroscopia PAC evidenciam possíveis efeitos de superfície. A falta de uma frequência bem definida nas amostras de 5 nm indicam que a quantidade de 111In(111Cd) na superfície da partícula é maior do que no interior da mesma, fazendo com que a interação hiperfina do núcleo de prova com o host não seja evidente. Já a união da técnica de difração de raios-X com a espectroscopia PAC foi fundamental para o entendimento do dano causado às partículas pela irradiação com 60Co. Quanto às medições de radiossensibilização a dosimetria Fricke gel foi fundamental para a verificação de um fator de aumento de dose (DEF) de até 1,67 e 1,09 para NPs de Gd2O3 irradiadas com 60Co e 6MV, respectivamente. Nas mesmas condições, para as amostras de Er2O3, foram encontrados valores de DEF de até 1,37 e 1,06. Isso comprova os efeitos radiossensibilizadores dessas NPs. Os resultados alcançados nesse trabalho não apenas fornecem dados importantes para o estudo de NPs de terra-rara na área de física da matéria condensada como também uma base sólida para a aplicação desses elementos como radiossensibilizadores em feixes de radioterapia, possibilitando a utilização da imagem por ressonância magnética para localizar e obter a concentração dessas NPs dentro do paciente, aumentando assim a eficiência do tratamento do câncer. / In this study Gd2O3 and Er2O3 nanoparticles were produced for application as radiosensitizers in radiotherapy beams. They were synthesized at the Hyperfine Interactions Laboratory, IPEN, using thermal decomposition method and characterized by X-ray diffraction, to verify crystalline structure, transmission electron microscopy, to obtain information about shape, size and size distribution, neutron activation analysis, whereby it was possible to determine samples purity and gadolinium and erbium concentration. Magnetization and perturbed γ-γ angular correlation (PAC) measurements were performed in order to study particles magnetic behavior and quadrupole interactions, respectively. Characterization results showed a bixbyite structure, 5 nm diameter post-synthesis particles with narrow size distribution. Rare-earth mass determination in each sample was important to perform normalization in magnetic susceptibility measurements, making possible the view of a high magnetization under 30 K for post-synthesis samples, what was not observed in larger particles, together with an effective magnetic moment enhancement for nanoparticles, not seen in bulk samples, and a change in the antiferromagnetic ordering temperature for Er2O3. PAC spectroscopy results show possible surface effects. The absence of a well-defined frequency in 5 nm samples indicates the amount of 111In(111Cd) at particle surface is bigger than in the core, resulting in a non-evident hyperfine interaction between the probe nuclei and the host. The X-ray diffraction and PAC spectroscopy joint was vital to understand the particles structural damage caused by 60Co irradiation. About radiosensitizer measurements a dose enhancement factor (DEF) of up to 1,67 and 1,09 for Gd2O3 nanoparticles under 60Co and 6MV irradiation, respectively, were observed. Under same conditions DEF values of up to 1,37 and 1,06 were found for Er2O3 samples. Results reached in this study provide not only important data for rare-earth oxides study in condensed matter physics but also a solid ground for the application of these elements as radiosensitizers in radiotherapy beams, allowing the use of magnetic resonance imaging to locate and obtain the concentration of these particles inside patient body, increasing cancer treatment efficiency.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24072017-144641 |
Date | 19 June 2017 |
Creators | Eduardo de Lima Corrêa |
Contributors | Maria da Penha Albuquerque Potiens, Artur Wilson Carbonari, Regina Bitelli Medeiros, Gabriel Adolfo Cabrera Pasca, Luciano Fabricio Dias Pereira, Vitor Vivolo |
Publisher | Universidade de São Paulo, Tecnologia Nuclear, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds