Return to search

Applying Natural Language Processing and Deep Learning Techniques for Raga Recognition in Indian Classical Music

In Indian Classical Music (ICM), the Raga is a musical piece's melodic framework. It encompasses the characteristics of a scale, a mode, and a tune, with none of them fully describing it, rendering the Raga a unique concept in ICM. The Raga provides musicians with a melodic fabric, within which all compositions and improvisations must take place. Identifying and categorizing the Raga is challenging due to its dynamism and complex structure as well as the polyphonic nature of ICM. Hence, Raga recognition—identify the constituent Raga in an audio file—has become an important problem in music informatics with several known prior approaches. Advancing the state of the art in Raga recognition paves the way to improving other Music Information Retrieval tasks in ICM, including transcribing notes automatically, recommending music, and organizing large databases.

This thesis presents a novel melodic pattern-based approach to recognizing Ragas by representing this task as a document classification problem, solved by applying a deep learning technique. A digital audio excerpt is hierarchically processed and split into subsequences and gamaka sequences to mimic a textual document structure, so our model can learn the resulting tonal and temporal sequence patterns using a Recurrent Neural Network. Although training and testing on these smaller sequences, we predict the Raga for the entire audio excerpt, with the accuracy of 90.3% for the Carnatic Music Dataset and 95.6% for the Hindustani Music Dataset, thus outperforming prior approaches in Raga recognition. / Master of Science / In Indian Classical Music (ICM), the Raga is a musical piece's melodic framework. The Raga is a unique concept in ICM, not fully described by any of the fundamental concepts of Western classical music. The Raga provides musicians with a melodic fabric, within which all compositions and improvisations must take place. Raga recognition refers to identifying the constituent Raga in an audio file, a challenging and important problem with several known prior approaches and applications in Music Information Retrieval. This thesis presents a novel approach to recognizing Ragas by representing this task as a document classification problem, solved by applying a deep learning technique. A digital audio excerpt is processed into a textual document structure, from which the constituent Raga is learned. Based on the evaluation with third-party datasets, our recognition approach achieves high accuracy, thus outperforming prior approaches.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99967
Date27 August 2020
CreatorsPeri, Deepthi
ContributorsComputer Science, Tilevich, Eli, Lyon, Eric, Lee, Sang Won
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.002 seconds