• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 4
  • 1
  • Tagged with
  • 89
  • 89
  • 89
  • 27
  • 18
  • 17
  • 17
  • 14
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High performance Deep Learning based Digital Pre-distorters for RF Power Amplifiers

Kudupudi, Rajesh 25 January 2022 (has links)
In this work, we present different deep learning-based digital pre-distorters and compare them based on their performance towards improving the linearity of highly non-linear power amplifiers. The simulation results show that BiLSTM based DPDs work the best in terms of improving the linearity performance. We also compare two methodologies of direct learning and indirect learning to develop deep learning-based digital pre-distorters (DL-DPDs) models and evaluate their improvement on the linearity of Power Amplifiers (PA). We carry out a theoretical analysis on the differences between these training methodologies and verify their performance with simulation results on class-AB and class-F⁻¹ PAs. The simulation results show that both the learning methods lead to an improvement of more than 12 dB and 11dB in the linearity of class-AB and class-F⁻¹ PAs respectively, with indirect learning DL-DPD offering marginally better performance. Moreover, we compare the DL-DPD with memory polynomial models and show that using the former gives a significant improvement over the memory polynomials. Furthermore, we discuss the advantages of exploiting a BiLSTM based neural network architecture for designing direct/indirect DPDs. We demonstrate that BiLSTM DPD can be used to pre distort signals of any size without the drop in linearity. Moreover, based on the insights we develop a frequency domain loss using which further increased the linearity of the PA. / Master of Science / Wireless communication devices have fundamentally changed the way we interact with people. This increased the user's reliance on communication devices and significantly grew the need for higher data rates and faster internet speeds. But one major obstacle inside the transmitter chain (antenna) with increasing the data rates is the power amplifier, which distorts the signals at these higher powers. This distortion will reduce the efficiency and reliability of communication systems, greatly decreasing the quality of communication. So, we developed a high-performance DPD using deep learning to combat this issue. In this paper, we compare different deep learning-based DPDs and analyze which offers better performance. We also contrast two training methodologies to learn these DL-DPDs, theoretically and with simulation to arrive at which method offers better performing DPDs. We do these experiments on two different types of power amplifiers, and signals of any length. We design a new loss function, such that optimizing it leads to better DL-DPDs.
2

Synthesizing Realistic Data for Vision Based Drone-to-Drone Detection

Yellapantula, Sudha Ravali 15 July 2019 (has links)
In the thesis, we aimed at building a robust UAV(drone) detection algorithm through which, one drone could detect another drone in flight. Though this was a straight forward object detection problem, the biggest challenge we faced for drone detection is the limited amount of drone images for training. To address this issue, we used Generative Adversarial Networks, CycleGAN to be precise, for the generation of realistic looking fake images which were indistinguishable from real data. CycleGAN is a classic example of Image to Image Translation technique, and we this applied in our situation where synthetic images from one domain were transformed into another domain, containing real data. The model, once trained, was capable of generating realistic looking images from synthetic data without the presence of real images. Following this, we employed a state of the art object detection model, YOLO(You Only Look Once), to build a Drone Detection model that was trained on the generated images. Finally, the performance of this model was compared against different datasets in order to evaluate its performance. / Master of Science / In the recent years, technologies like Deep Learning and Machine Learning have seen many rapid developments. Among the many applications they have, object detection is one of the widely used application and well established problems. In our thesis, we deal with a scenario where we have a swarm of drones and our aim is for one drone to recognize another drone in its field of vision. As there was no drone image dataset readily available, we explored different ways of generating realistic data to address this issue. Finally, we proposed a solution to generate realistic images using Deep Learning techniques and trained an object detection model on it where we evaluated how well it has performed against other models.
3

Artificial intelligence system for continuous affect estimation from naturalistic human expressions

Abd Gaus, Yona Falinie January 2018 (has links)
The analysis and automatic affect estimation system from human expression has been acknowledged as an active research topic in computer vision community. Most reported affect recognition systems, however, only consider subjects performing well-defined acted expression, in a very controlled condition, so they are not robust enough for real-life recognition tasks with subject variation, acoustic surrounding and illumination change. In this thesis, an artificial intelligence system is proposed to continuously (represented along a continuum e.g., from -1 to +1) estimate affect behaviour in terms of latent dimensions (e.g., arousal and valence) from naturalistic human expressions. To tackle the issues, feature representation and machine learning strategies are addressed. In feature representation, human expression is represented by modalities such as audio, video, physiological signal and text modality. Hand- crafted features is extracted from each modality per frame, in order to match with consecutive affect label. However, the features extracted maybe missing information due to several factors such as background noise or lighting condition. Haar Wavelet Transform is employed to determine if noise cancellation mechanism in feature space should be considered in the design of affect estimation system. Other than hand-crafted features, deep learning features are also analysed in terms of the layer-wise; convolutional and fully connected layer. Convolutional Neural Network such as AlexNet, VGGFace and ResNet has been selected as deep learning architecture to do feature extraction on top of facial expression images. Then, multimodal fusion scheme is applied by fusing deep learning feature and hand-crafted feature together to improve the performance. In machine learning strategies, two-stage regression approach is introduced. In the first stage, baseline regression methods such as Support Vector Regression are applied to estimate each affect per time. Then in the second stage, subsequent model such as Time Delay Neural Network, Long Short-Term Memory and Kalman Filter is proposed to model the temporal relationships between consecutive estimation of each affect. In doing so, the temporal information employed by a subsequent model is not biased by high variability present in consecutive frame and at the same time, it allows the network to exploit the slow changing dynamic between emotional dynamic more efficiently. Following of two-stage regression approach for unimodal affect analysis, fusion information from different modalities is elaborated. Continuous emotion recognition in-the-wild is leveraged by investigating mathematical modelling for each emotion dimension. Linear Regression, Exponent Weighted Decision Fusion and Multi-Gene Genetic Programming are implemented to quantify the relationship between each modality. In summary, the research work presented in this thesis reveals a fundamental approach to automatically estimate affect value continuously from naturalistic human expression. The proposed system, which consists of feature smoothing, deep learning feature, two-stage regression framework and fusion using mathematical equation between modalities is demonstrated. It offers strong basis towards the development artificial intelligent system on estimation continuous affect estimation, and more broadly towards building a real-time emotion recognition system for human-computer interaction.
4

Color Invariant Skin Segmentation

Xu, Han 25 March 2022 (has links)
This work addresses the problem of automatically detecting human skin in images without reliance on color information. Unlike previous methods, we present a new approach that performs well in the absence of such information. A key aspect of the work is that color-space augmentation is applied strategically during the training, with the goal of reducing the influence of features that are based entirely on color and increasing more semantic understanding. The resulting system exhibits a dramatic improvement in performance for images in which color details are diminished. We have demonstrated the concept using the U-Net architecture, and experimental results show improvements in evaluations for all Fitzpatrick skin tones in the ECU dataset. We further tested the system with RFW dataset to show that the proposed method is consistent across different ethnicities and reduces bias to any skin tones. Therefore, this work has strong potential to aid in mitigating bias in automated systems that can be applied to many applications including surveillance and biometrics. / Master of Science / Skin segmentation deals with the classification of skin and non-skin pixels and regions in a image containing these information. Although most previous skin-detection methods have used color cues almost exclusively, they are vulnerable to external factors (e.g., poor or unnatural illumination and skin tones). In this work, we present a new approach based on U-Net that performs well in the absence of color information. To be specific, we apply a new color space augmentation into the training stage to improve the performance of skin segmentation system over the illumination and skin tone diverse. The system was trained and tested with both original and color changed ECU dataset. We also test our system with RFW dataset, a larger dataset with four human races with different skin tones. The experimental results show improvements in evaluations for skin tones and complex illuminations.
5

Revealing the Determinants of Acoustic Aesthetic Judgment Through Algorithmic

Jenkins, Spencer Daniel 03 July 2019 (has links)
This project represents an important first step in determining the fundamental aesthetically relevant features of sound. Though there has been much effort in revealing the features learned by a deep neural network (DNN) trained on visual data, little effort in applying these techniques to a network trained on audio data has been performed. Importantly, these efforts in the audio domain often impose strong biases about relevant features (e.g., musical structure). In this project, a DNN is trained to mimic the acoustic aesthetic judgment of a professional composer. A unique corpus of sounds and corresponding professional aesthetic judgments is leveraged for this purpose. By applying a variation of Google's "DeepDream" algorithm to this trained DNN, and limiting the assumptions introduced, we can begin to listen to and examine the features of sound fundamental for aesthetic judgment. / Master of Science / The question of what makes a sound aesthetically “interesting” is of great importance to many, including biologists, philosophers of aesthetics, and musicians. This project serves as an important first step in determining the fundamental aesthetically relevant features of sound. First, a computer is trained to mimic the aesthetic judgments of a professional composer; if the composer would deem a sound “interesting,” then so would the computer. During this training, the computer learns for itself what features of sound are important for this classification. Then, a variation of Google’s “DeepDream” algorithm is applied to allow these learned features to be heard. By carefully considering the manner in which the computer is trained, this algorithmic “dreaming” allows us to begin to hear aesthetically salient features of sound.
6

Segmenting Skin Lesion Attributes in Dermoscopic Images Using Deep Learing Algorithm for Melanoma Detection

Dong, Xu 09 1900 (has links)
Melanoma is the most deadly form of skin cancer worldwide, which causes the 75% of deaths related to skin cancer. National Cancer Institute estimated that 91,270 new case and 9,320 deaths are expected in 2018 caused by melanoma. Early detection of melanoma is the key for the treatment. The image technique to diagnose skin cancer is dermoscopy, which leads to improved diagnose accuracy compared to traditional ABCD criteria. But reading and examining dermoscopic images is a time-consuming and complex process. Therefore, computerized analysis methods of dermoscopic images have been developed to assist the visual interpretation of dermoscopic images. The automatic segmentation of skin lesion attributes is a key step in computerized analysis of dermoscopic images. The International Skin Imaging Collaboration (ISIC) hosted the 2018 Challenges to help the diagnosis of melanoma based on dermoscopic images. In this thesis, I develop a deep learning based approach to automatically segment the attributes from dermoscopic skin lesion images. The approach described in the thesis achieved the Jaccard index of 0.477 on the official test dataset, which ranked 5th place in the challenge. / Master of Science / Melanoma is the most deadly form of skin cancer worldwide, which causes the 75% of deaths related to skin cancer. Early detection of melanoma is the key for the treatment. The image technique to diagnose skin cancer is called dermoscopy. It has become increasingly conveniently to use dermoscopic device to image the skin in recent years. Dermoscopic lens are available in the market for individual customer. When coupling the dermoscopic lens with smartphones, people are be able to take dermoscopic images of their skin even at home. However, reading and examining dermoscopic images is a time-consuming and complex process. It requires specialists to examine the image, extract the features, and compare with criteria to make clinical diagnosis. The time-consuming image examination process becomes the bottleneck of fast diagnosis of melanoma. Therefore, computerized analysis methods of dermoscopic images have been developed to promote the melanoma diagnosis and to increase the survival rate and save lives eventually. The automatic segmentation of skin lesion attributes is a key step in computerized analysis of dermoscopic images. In this thesis, I developed a deep learning based approach to automatically segment the attributes from dermoscopic skin lesion images. The segmentation result from this approach won 5th place in a public competition. It has the potential to be utilized in clinic application in the future.
7

Towards Naturalistic Exoskeleton Glove Control for Rehabilitation and Assistance

Chauhan, Raghuraj Jitendra 11 January 2020 (has links)
This thesis presents both a control scheme for naturalistic control of an exoskeleton glove and a glove design. Exoskeleton development has been focused primarily on design, improving soft actuator and cable-driven systems, with only limited focus on intelligent control. There is a need for control that is not limited to position or force reference signals and is user-driven. By implementing a motion amplification controller to increase weak movements of an impaired individual, a finger joint trajectory can be observed and used to predict their grasping intention. The motion amplification functions off of a virtual dynamical system that safely enforces the range of motion of the finger joints and ensures stability. Three grasp prediction algorithms are developed with improved levels of accuracy: regression, trajectory, and deep learning based. These algorithms were tested on published finger joint trajectories. The fusion of the amplification and prediction could be used to achieve naturalistic, user-guided control of an exoskeleton glove. The key to accomplishing this is series elastic actuators to move the finger joints, thereby allowing the wearer to deflect against the glove and inform the controller of their intention. These actuators are used to move the fingers in a nine degree of freedom exoskeleton that is capable of achieving all the grasps used most frequently in daily life. The controllers and exoskeleton presented here are the basis for improved exoskeleton glove control that can be used to assist or rehabilitate impaired individuals. / Master of Science / Millions of Americans report difficulty holding small or even lightweight objects. In many of these cases, their difficulty stems from a condition such as a stroke or arthritis, requiring either rehabilitation or assistance. For both treatments, exoskeleton gloves are a potential solution; however, widespread deployment of exoskeletons in the treatment of hand conditions requires significant advancement. Towards that end, the research community has devoted itself to improving the design of exoskeletons. Systems that use soft actuation or are driven by artificial tendons have merit in that they are comfortable to the wearer, but lack the rigidity required for monitoring the state of the hand and controlling it. Electromyography sensors are also a commonly explored technology for determining motion intention; however, only primitive conclusions can be drawn when using these sensors on the muscles that control the human hand. This thesis proposes a system that does not rely on soft actuation but rather a deflectable exoskeleton that can be used in rehabilitation or assistance. By using series elastic actuators to move the exoskeleton, the wearer of the glove can exert their influence over the machine. Additionally, more intelligent control is needed in the exoskeleton. The approach taken here is twofold. First, a motion amplification controller increases the finger movements of the wearer. Second, the amplified motion is processed using machine learning algorithms to predict what type of grasp the user is attempting. The controller would then be able to fuse the two, the amplification and prediction, to control the glove naturalistically.
8

Figure Extraction from Scanned Electronic Theses and Dissertations

Kahu, Sampanna Yashwant 29 September 2020 (has links)
The ability to extract figures and tables from scientific documents can solve key use-cases such as their semantic parsing, summarization, or indexing. Although a few methods have been developed to extract figures and tables from scientific documents, their performance on scanned counterparts is considerably lower than on born-digital ones. To facilitate this, we propose methods to effectively extract figures and tables from Electronic Theses and Dissertations (ETDs), that out-perform existing methods by a considerable margin. Our contribution towards this goal is three-fold. (a) We propose a system/model for improving the performance of existing methods on scanned scientific documents for figure and table extraction. (b) We release a new dataset containing 10,182 labelled page-images spanning across 70 scanned ETDs with 3.3k manually annotated bounding boxes for figures and tables. (c) Lastly, we release our entire code and the trained model weights to enable further research (https://github.com/SampannaKahu/deepfigures-open). / Master of Science / Portable Document Format (PDF) is one of the most popular document formats. However, parsing PDF files is not a trivial task. One use-case of parsing PDF files is the search functionality on websites hosting scholarly documents (i.e., IEEE Xplore, etc.). Having the ability to extract figures and tables from a scholarly document helps this use-case, among others. Methods using deep learning exist which extract figures from scholarly documents. However, a large number of scholarly documents, especially the ones published before the advent of computers, have been scanned from hard paper copies into PDF. In particular, we focus on scanned PDF versions of long documents, such as Electronic Theses and Dissertations (ETDs). No experiments have been done yet that evaluate the efficacy of the above-mentioned methods on this scanned corpus. This work explores and attempts to improve the performance of these existing methods on scanned ETDs. A new gold standard dataset is created and released as a part of this work for figure extraction from scanned ETDs. Finally, the entire source code and trained model weights are made open-source to aid further research in this field.
9

Deep Learning for Enhancing Precision Medicine

Oh, Min 07 June 2021 (has links)
Most medical treatments have been developed aiming at the best-on-average efficacy for large populations, resulting in treatments successful for some patients but not for others. It necessitates the need for precision medicine that tailors medical treatment to individual patients. Omics data holds comprehensive genetic information on individual variability at the molecular level and hence the potential to be translated into personalized therapy. However, the attempts to transform omics data-driven insights into clinically actionable models for individual patients have been limited. Meanwhile, advances in deep learning, one of the most promising branches of artificial intelligence, have produced unprecedented performance in various fields. Although several deep learning-based methods have been proposed to predict individual phenotypes, they have not established the state of the practice, due to instability of selected or learned features derived from extremely high dimensional data with low sample sizes, which often results in overfitted models with high variance. To overcome the limitation of omics data, recent advances in deep learning models, including representation learning models, generative models, and interpretable models, can be considered. The goal of the proposed work is to develop deep learning models that can overcome the limitation of omics data to enhance the prediction of personalized medical decisions. To achieve this, three key challenges should be addressed: 1) effectively reducing dimensions of omics data, 2) systematically augmenting omics data, and 3) improving the interpretability of omics data. / Doctor of Philosophy / Most medical treatments have been developed aiming at the best-on-average efficacy for large populations, resulting in treatments successful for some patients but not for others. It necessitates the need for precision medicine that tailors medical treatment to individual patients. Biological data such as DNA sequences and snapshots of genetic activities hold comprehensive information on individual variability and hence the potential to accelerate personalized therapy. However, the attempts to transform data-driven insights into clinical models for individual patients have been limited. Meanwhile, advances in deep learning, one of the most promising branches of artificial intelligence, have produced unprecedented performance in various fields. Although several deep learning-based methods have been proposed to predict individual treatment or outcome, they have not established the state of the practice, due to the complexity of biological data and limited availability, which often result in overfitted models that may work on training data but not on test data or unseen data. To overcome the limitation of biological data, recent advances in deep learning models, including representation learning models, generative models, and interpretable models, can be considered. The goal of the proposed work is to develop deep learning models that can overcome the limitation of omics data to enhance the prediction of personalized medical decisions. To achieve this, three key challenges should be addressed: 1) effectively reducing the complexity of biological data, 2) generating realistic biological data, and 3) improving the interpretability of biological data.
10

End-To-End Text Detection Using Deep Learning

Ibrahim, Ahmed Sobhy Elnady 19 December 2017 (has links)
Text detection in the wild is the problem of locating text in images of everyday scenes. It is a challenging problem due to the complexity of everyday scenes. This problem possesses a great importance for many trending applications, such as self-driving cars. Previous research in text detection has been dominated by multi-stage sequential approaches which suffer from many limitations including error propagation from one stage to the next. Another line of work is the use of deep learning techniques. Some of the deep methods used for text detection are box detection models and fully convolutional models. Box detection models suffer from the nature of the annotations, which may be too coarse to provide detailed supervision. Fully convolutional models learn to generate pixel-wise maps that represent the location of text instances in the input image. These models suffer from the inability to create accurate word level annotations without heavy post processing. To overcome these aforementioned problems we propose a novel end-to-end system based on a mix of novel deep learning techniques. The proposed system consists of an attention model, based on a new deep architecture proposed in this dissertation, followed by a deep network based on Faster-RCNN. The attention model produces a high-resolution map that indicates likely locations of text instances. A novel aspect of the system is an early fusion step that merges the attention map directly with the input image prior to word-box prediction. This approach suppresses but does not eliminate contextual information from consideration. Progressively larger models were trained in 3 separate phases. The resulting system has demonstrated an ability to detect text under difficult conditions related to illumination, resolution, and legibility. The system has exceeded the state of the art on the ICDAR 2013 and COCO-Text benchmarks with F-measure values of 0.875 and 0.533, respectively. / Ph. D.

Page generated in 0.156 seconds