• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 4
  • 1
  • Tagged with
  • 103
  • 103
  • 103
  • 33
  • 22
  • 21
  • 18
  • 18
  • 18
  • 17
  • 17
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Deep Learning Approach to Predict Full-Field Stress Distribution in Composite Materials

Sepasdar, Reza 17 May 2021 (has links)
This thesis proposes a deep learning approach to predict stress at various stages of mechanical loading in 2-D representations of fiber-reinforced composites. More specifically, the full-field stress distribution at elastic and at an early stage of damage initiation is predicted based on the microstructural geometry. The required data set for the purposes of training and validation are generated via high-fidelity simulations of several randomly generated microstructural representations with complex geometries. Two deep learning approaches are employed and their performances are compared: fully convolutional generator and Pix2Pix translation. It is shown that both the utilized approaches can well predict the stress distributions at the designated loading stages with high accuracy. / M.S. / Fiber-reinforced composites are material types with excellent mechanical performance. They form the major material in the construction of space shuttles, aircraft, fancy cars, etc., the structures that are designed to be lightweight and at the same time extremely stiff and strong. Due to the broad application, especially in the sensitives industries, fiber-reinforced composites have always been a subject of meticulous research studies. The research studies to better understand the mechanical behavior of these composites has to be conducted on the micro-scale. Since the experimental studies on micro-scale are expensive and extremely limited, numerical simulations are normally adopted. Numerical simulations, however, are complex, time-consuming, and highly computationally expensive even when run on powerful supercomputers. Hence, this research aims to leverage artificial intelligence to reduce the complexity and computational cost associated with the existing high-fidelity simulation techniques. We propose a robust deep learning framework that can be used as a replacement for the conventional numerical simulations to predict important mechanical attributes of the fiber-reinforced composite materials on the micro-scale. The proposed framework is shown to have high accuracy in predicting complex phenomena including stress distributions at various stages of mechanical loading.
42

Naturally Generated Decision Trees for Image Classification

Ravi, Sumved Reddy 31 August 2021 (has links)
Image classification has been a pivotal area of research in Deep Learning, with a vast body of literature working to tackle the problem, constantly striving to achieve higher accuracies. This push to reach achieve greater prediction accuracy however, has further exacerbated the black box phenomenon which is inherent of neural networks, and more for so CNN style deep architectures. Likewise, it has lead to the development of highly tuned methods, suitable only for a specific data sets, requiring significant work to alter given new data. Although these models are capable of producing highly accurate predictions, we have little to no ability to understand the decision process taken by a network to reach a conclusion. This factor poses a difficulty in use cases such as medical diagnostics tools or autonomous vehicles, which require insight into prediction reasoning to validate a conclusion or to debug a system. In essence, modern applications which utilize deep networks are able to learn to produce predictions, but lack interpretability and a deeper understanding of the data. Given this key point, we look to decision trees, opposite in nature to deep networks, with a high level of interpretability but a low capacity for learning. In our work we strive to merge these two techniques as a means to maintain the capacity for learning while providing insight into the decision process. More importantly, we look to expand the understanding of class relationships through a tree architecture. Our ultimate goal in this work is to create a technique able to automatically create a visual feature based knowledge hierarchy for class relations, applicable broadly to any data set or combination thereof. We maintain these goals in an effort to move away from specific systems and instead toward artificial general intelligence (AGI). AGI requires a deeper understanding over a broad range of information, and more so the ability to learn new information over time. In our work we embed networks of varying sizes and complexity within decision trees on a node level, where each node network is responsible for selecting the next branch path in the tree. Each leaf node represents a single class and all parent and ancestor nodes represent groups of classes. We designed the method such that classes are reasonably grouped by their visual features, where parent and ancestor nodes represent hidden super classes. Our work aims to introduce this method as a small step towards AGI, where class relations are understood through an automatically generated decision tree (representing a class hierarchy), capable of accurate image classification. / Master of Science / Many modern day applications make use of deep networks for image classification. Often these networks are incredibly complex in architecture, and applicable only for specific tasks and data. Standard approaches use just a neural network to produce predictions. However, the internal decision process of the network remains a black box due to the nature of the technique. As more complex human related applications, such as medical image diagnostic tools or autonomous driving software, are being created, they require an understanding of reasoning behind a prediction. To provide this insight into the prediction reasoning, we propose a technique which merges decision trees and deep networks. Tested on the MNIST image data set we were able to achieve an accuracy over 99.0%. We were also able to achieve an accuracy over 73.0% on the CIFAR-10 image data set. Our method is found to create decision trees that are easily understood and are reasonably capable of image classification.
43

The Impact of Corporate Crisis on Stock Returns: An Event-driven Approach

Song, Ziqian 25 August 2020 (has links)
Corporate crisis events such as cyber attacks, executive scandals, facility accidents, fraud, and product recalls can damage customer trust and firm reputation severely, which may lead to tremendous loss in sales and firm equity value. My research aims to integrate information available on the market to assist firms in tackling crisis events, and to provide insight for better decision making. We first study the impact of crisis events on firm performance. We build a hybrid deep learning model that utilizes information from financial news, social media, and historical stock prices to predict firm stock performance during firm crisis events. We develop new methodologies that can extract, select, and represent useful features from textual data. Our hybrid deep learning model achieves 68.8% prediction accuracy for firm stock movements. Furthermore, we explore the underlying mechanisms behind how stakeholders adopt and propagate event information on social media, as well as how this would impact firm stock movements during such events. We adopt an extended epidemiology model, SEIZ, to simulate the information propagation on social media during a crisis. The SEIZ model classifies people into four states (susceptible, exposed, infected, and skeptical). By modeling the propagation of firm-initiated information and user-initiated information on Twitter, we simulate the dynamic process of Twitter stakeholders transforming from one state to another. Based on the modeling results, we quantitatively measure how stakeholders adopt firm crisis information on Twitter over time. We then empirically evaluate the impact of different information adoption processes on firm stock performance. We observe that investors often react very positively when a higher portion of stakeholders adopt the firm-initiated information on Twitter, and negatively when a higher portion of stakeholders adopt user-initiated information. Additionally, we try to identify features that can indicate the firm stock movement during corporate events. We adopt Layer-wised Relevance Propagation (LRP) to extract language features that can be the predictive variables for stock surge and stock plunge. Based on our trained hybrid deep learning model, we generate relevance scores for language features in news titles and tweets, which can indicate the amount of contributions these features made to the final predictions of stock surge and plunge. / Doctor of Philosophy / Corporate crisis events such as cyber attacks, executive scandals, facility accidents, fraud, and product recalls can damage customer trust and firm reputation severely, which may lead to tremendous loss in sales and firm equity value. My research aims to integrate information available on the market to assist firms in tackling crisis events and providing insight for better decision making. We first study the impact of crisis events on firm performance. We investigate five types of crisis events for SandP 500 companies, with 14,982 related news titles and 4.3 million relevant tweets. We build an event-driven hybrid deep learning model that utilizes information from financial news, social media, and historical stock prices to predict firm stock performance during firm crisis events. Furthermore, we explore how stakeholders adopt and propagate event information on social media, as well as how this would impact firm stock movements during the events. Social media has become an increasingly important channel for corporate crisis management. However, little is known on how crisis information propagates on social media. We observe that investors often react very positively when a higher portion of stakeholders adopt the firm-initiated information on Twitter, and negatively when a higher portion of stakeholders adopt user-initiated information. In addition, we find that the language used in the crisis news and social media discussions can have surprising predictive power on the firm stock. Thus, we develop a methodology to identify the importance of text features associated with firm performance during crisis events, such as predictive words or phrases.
44

Product Defect Discovery and Summarization from Online User Reviews

Zhang, Xuan 29 October 2018 (has links)
Product defects concern various groups of people, such as customers, manufacturers, government officials, etc. Thus, defect-related knowledge and information are essential. In keeping with the growth of social media, online forums, and Internet commerce, people post a vast amount of feedback on products, which forms a good source for the automatic acquisition of knowledge about defects. However, considering the vast volume of online reviews, how to automatically identify critical product defects and summarize the related information from the huge number of user reviews is challenging, even when we target only the negative reviews. As a kind of opinion mining research, existing defect discovery methods mainly focus on how to classify the type of product issues, which is not enough for users. People expect to see defect information in multiple facets, such as product model, component, and symptom, which are necessary to understand the defects and quantify their influence. In addition, people are eager to seek problem resolutions once they spot defects. These challenges cannot be solved by existing aspect-oriented opinion mining models, which seldom consider the defect entities mentioned above. Furthermore, users also want to better capture the semantics of review text, and to summarize product defects more accurately in the form of natural language sentences. However, existing text summarization models including neural networks can hardly generalize to user review summarization due to the lack of labeled data. In this research, we explore topic models and neural network models for product defect discovery and summarization from user reviews. Firstly, a generative Probabilistic Defect Model (PDM) is proposed, which models the generation process of user reviews from key defect entities including product Model, Component, Symptom, and Incident Date. Using the joint topics in these aspects, which are produced by PDM, people can discover defects which are represented by those entities. Secondly, we devise a Product Defect Latent Dirichlet Allocation (PDLDA) model, which describes how negative reviews are generated from defect elements like Component, Symptom, and Resolution. The interdependency between these entities is modeled by PDLDA as well. PDLDA answers not only what the defects look like, but also how to address them using the crowd wisdom hidden in user reviews. Finally, the problem of how to summarize user reviews more accurately, and better capture the semantics in them, is studied using deep neural networks, especially Hierarchical Encoder-Decoder Models. For each of the research topics, comprehensive evaluations are conducted to justify the effectiveness and accuracy of the proposed models, on heterogeneous datasets. Further, on the theoretical side, this research contributes to the research stream on product defect discovery, opinion mining, probabilistic graphical models, and deep neural network models. Regarding impact, these techniques will benefit related users such as customers, manufacturers, and government officials. / Ph. D. / Product defects concern various groups of people, such as customers, manufacturers, and government officials. Thus, defect-related knowledge and information are essential. In keeping with the growth of social media, online forums, and Internet commerce, people post a vast amount of feedback on products, which forms a good source for the automatic acquisition of knowledge about defects. However, considering the vast volume of online reviews, how to automatically identify critical product defects and summarize the related information from the huge number of user reviews is challenging, even when we target only the negative reviews. People expect to see defect information in multiple facets, such as product model, component, and symptom, which are necessary to understand the defects and quantify their influence. In addition, people are eager to seek problem resolutions once they spot defects. Furthermore, users also want to better summarize product defects more accurately in the form of natural language sentences. These requirements cannot be satisfied by existing methods, which seldom consider the defect entities mentioned above, or hardly generalize to user review summarization. In this research, we develop novel Machine Learning (ML) algorithms for product defect discovery and summarization. Firstly, we study how to identify product defects and their related attributes, such as Product Model, Component, Symptom, and Incident Date. Secondly, we devise a novel algorithm, which can discover product defects and the related Component, Symptom, and Resolution, from online user reviews. This method tells not only what the defects look like, but also how to address them using the crowd wisdom hidden in user reviews. Finally, we address the problem of how to summarize user reviews in the form of natural language sentences using a paraphrase-style method. On the theoretical side, this research contributes to multiple research areas in Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning. Regarding impact, these techniques will benefit related users such as customers, manufacturers, and government officials.
45

Detecting and Mitigating Rumors in Social Media

Islam, Mohammad Raihanul 19 June 2020 (has links)
The penetration of social media today enables the rapid spread of breaking news and other developments to millions of people across the globe within hours. However, such pervasive use of social media by the general masses to receive and consume news is not without its attendant negative consequences as it also opens opportunities for nefarious elements to spread rumors or misinformation. A rumor generally refers to an interesting piece of information that is widely disseminated through a social network and whose credibility cannot be easily substantiated. A rumor can later turn out to be true or false or remain unverified. The spread of misinformation and fake news can lead to deleterious effects on users and society. The objective of the proposed research is to develop a range of machine learning methods that will effectively detect and characterize rumor veracity in social media. Since users are the primary protagonists on social media, analyzing the characteristics of information spread w.r.t. users can be effective for our purpose. For our first problem, we propose a method of computing user embeddings from underlying social networks. For our second problem, we propose a long short-term memory (LSTM) based model that can classify whether a story discussed in a thread can be categorized as a false, true, or unverified rumor. We demonstrate the utility of user features computed from the first problem to address the second problem. For our third problem, we propose a method that uses user profile information to detect rumor veracity. This method has the advantage of not requiring the underlying social network, which can be tedious to compute. For the last problem, we investigate a rumor mitigation technique that recommends fact-checking URLs to rumor debunkers, i.e., social network users who are very passionate about disseminating true news. Here, we incorporate the influence of other users on rumor debunkers in addition to their previous URL sharing history to recommend relevant fact-checking URLs. / Doctor of Philosophy / A rumor is generally defined as an interesting piece of a story that cannot be authenticated easily. On social networks, a user can generally find an interesting piece of news or story and may share (retweet) it. A story that initially appears plausible can later turn out to be false or remain unverified. The propagation of false rumors on social networks has a deteriorating effect on user experience. Therefore, rumor veracity detection is important, and drawing interest in social network research. In this thesis, we develop various machine learning models that detect rumor veracity. For this purpose, we exploit different types of information regarding users, such as profile details and connectivity with other users etc. Moreover, we propose a rumor mitigation technique that recommends fact-checking URLs to social network users who are passionate about debunking rumors. Here, we leverage similar techniques used in e-commerce sites for recommending products to solve this problem.
46

A Profit-Neutral Double-price-signal Retail Electricity Market Solution for Incentivizing Price-responsive DERs Considering Network Constraints

Cai, Mengmeng 23 June 2020 (has links)
Emerging technologies, including distributed energy resources (DERs), internet-of-things and advanced distribution management systems, are revolutionizing the power industry. They provide benefits like higher operation flexibility and lower bulk grid dependency, and are moving the modern power grid towards a decentralized, interconnected and intelligent direction. Consequently, the emphasis of the system operation management has been shifted from the supply-side to the demand-side. It calls for a reconsideration of the business model for future retail market operators. To address this need, this dissertation proposes an innovative retail market solution tailored to market environments penetrated with price-responsive DERs. The work is presented from aspects of theoretical study, test-bed platform development, and experimental analysis, within which two topics relevant to the retail market operation are investigated in depth. The first topic covers the modeling of key retail market participants. With regard to price-insensitive participants, fixed loads are treated as the representative. Deep learning-based day-ahead load forecasting models are developed in this study, utilizing both recurrent and convolutional neural networks, to predict the part of demands that keep fixed regardless of the market price. With regard to price-sensitive participants, battery storages are selected as the representative. An optimization-based battery arbitrage model is developed in this study to represent their price-responsive behaviors in response to a dynamic price. The second topic further investigates how the retail market model and pricing strategy should be designed to incentivize these market participants. Different from existing works, this study innovatively proposes a profit-neutral double-price-signal retail market model. Such a design differentiates elastic prosumers, who actively offer flexibilities to the system operation, from normal inelastic consumers/generators, based on their sensitivities to the market price. Two price signals, namely retail grid service price and retail energy price, are then introduced to separately quantify values of the flexibility, provided by elastic participants, and the electricity commodity, sold/bought to/from inelastic participants. Within the proposed retail market, a non-profit retail market operator (RMO) manages and settles the market through determining the price signals and supplementary subsidy to minimize the overall system cost. In response to the announced retail grid service price, elastic prosumers adjust their day-ahead operating schedules to maximize their payoffs. Given the interdependency between decisions made by the RMO and elastic participants, a retail pricing scheme, formulated based on a bi-level optimization framework, is proposed. Additional efforts are made on merging and linearizing the original non-convex bi-level problem into a single-level mixed-integer linear programming problem to ensure the computational efficiency of the retail pricing tool. Case studies are conducted on a modified IEEE 34-bus test-bed system, simulating both physical operations of the power grid and financial interactions inside the retail market. Experimental results demonstrate promising properties of the proposed retail market solution: First of all, it is able to provide cost-saving benefits to inelastic customers and create revenues for elastic customers at the same time, justifying the rationalities of these participants to join the market. Second of all, the addition of the grid service subsidy not only strengthens the profitability of the elastic customer, but also ensures that the benefit enjoyed per customer will not be compromised by the competition brought up by a growing number of participants. Furthermore, it is able to properly capture impacts from line losses and voltage constraints on the system efficiency and stability, so as to derive practical pricing solutions that respect the system operating rules. Last but not least, it encourages the technology improvement of elastic assets as elastic assets in better conditions are more profitable and could better save the electricity bills for inelastic customers. Above all, the superiority of the proposed retail market solution is proven. It can serve as a promising start for the retail electricity market reconstruction. / Doctor of Philosophy / The electricity market plays a critical role in ensuring the economic and secure operation of the power system. The progress made by distributed energy resources (DERs) has reshaped the modern power industry bringing a larger proportion of price-responsive behaviors to the demand-side. It challenges the traditional wholesale-only electricity market and calls for an addition of retail markets to better utilize distributed and elastic assets. Therefore, this dissertation targets at offering a reliable and computational affordable retail market solution to bridge this knowledge gap. Different from existing works, this study assumes that the retail market is managed by a profit-neutral retail market operator (RMO), who oversees and facilitates the system operation for maximizing the system efficiency rather than making profits. Market participants are categorized into two groups: inelastic participants and elastic participants, based on their sensitivity to the market price. The motivation behind this design is that instead of treating elastic participants as normal customers, it is more reasonable to treat them as grid service providers who offer operational flexibilities that benefit the system efficiency. Correspondingly, a double-signal pricing scheme is proposed, such that the flexibility, provided by elastic participants, and the electricity commodity, generated/consumed by inelastic participants, are separately valued by two distinct prices, namely retail grid service price and retail energy price. A grid service subsidy is also introduced in the pricing system to provide supplementary incentives to elastic customers. These two price signals in addition to the subsidy are determined by the RMO via solving a bi-level optimization problem given the interdependency between the prices and reaction of elastic participants. Experimental results indicate that the proposed retail market model and pricing scheme are beneficial for both types of market participants, practical for the network-constrained real-world implementation, and supportive for the technology improvement of elastic assets.
47

A Deep Learning Approach to Predict Accident Occurrence Based on Traffic Dynamics

Khaghani, Farnaz 05 1900 (has links)
Traffic accidents are of concern for traffic safety; 1.25 million deaths are reported each year. Hence, it is crucial to have access to real-time data and rapidly detect or predict accidents. Predicting the occurrence of a highway car accident accurately any significant length of time into the future is not feasible since the vast majority of crashes occur due to unpredictable human negligence and/or error. However, rapid traffic incident detection could reduce incident-related congestion and secondary crashes, alleviate the waste of vehicles’ fuel and passengers’ time, and provide appropriate information for emergency response and field operation. While the focus of most previously proposed techniques is predicting the number of accidents in a certain region, the problem of predicting the accident occurrence or fast detection of the accident has been little studied. To address this gap, we propose a deep learning approach and build a deep neural network model based on long short term memory (LSTM). We apply it to forecast the expected speed values on freeways’ links and identify the anomalies as potential accident occurrences. Several detailed features such as weather, traffic speed, and traffic flow of upstream and downstream points are extracted from big datasets. We assess the proposed approach on a traffic dataset from Sacramento, California. The experimental results demonstrate the potential of the proposed approach in identifying the anomalies in speed value and matching them with accidents in the same area. We show that this approach can handle a high rate of rapid accident detection and be implemented in real-time travelers’ information or emergency management systems. / M.S. / Rapid traffic accident detection/prediction is essential for scaling down non-recurrent conges- tion caused by traffic accidents, avoiding secondary accidents, and accelerating emergency system responses. In this study, we propose a framework that uses large-scale historical traffic speed and traffic flow data along with the relevant weather information to obtain robust traffic patterns. The predicted traffic patterns can be coupled with the real traffic data to detect anomalous behavior that often results in traffic incidents in the roadways. Our framework consists of two major steps. First, we estimate the speed values of traffic at each point based on the historical speed and flow values of locations before and after each point on the roadway. Second, we compare the estimated values with the actual ones and introduce the ones that are significantly different as an anomaly. The anomaly points are the potential points and times that an accident occurs and causes a change in the normal behavior of the roadways. Our study shows the potential of the approach in detecting the accidents while exhibiting promising performance in detecting the accident occurrence at a time close to the actual time of occurrence.
48

Modified Kernel Principal Component Analysis and Autoencoder Approaches to Unsupervised Anomaly Detection

Merrill, Nicholas Swede 01 June 2020 (has links)
Unsupervised anomaly detection is the task of identifying examples that differ from the normal or expected pattern without the use of labeled training data. Our research addresses shortcomings in two existing anomaly detection algorithms, Kernel Principal Component Analysis (KPCA) and Autoencoders (AE), and proposes novel solutions to improve both of their performances in the unsupervised settings. Anomaly detection has several useful applications, such as intrusion detection, fault monitoring, and vision processing. More specifically, anomaly detection can be used in autonomous driving to identify obscured signage or to monitor intersections. Kernel techniques are desirable because of their ability to model highly non-linear patterns, but they are limited in the unsupervised setting due to their sensitivity of parameter choices and the absence of a validation step. Additionally, conventionally KPCA suffers from a quadratic time and memory complexity in the construction of the gram matrix and a cubic time complexity in its eigendecomposition. The problem of tuning the Gaussian kernel parameter, $sigma$, is solved using the mini-batch stochastic gradient descent (SGD) optimization of a loss function that maximizes the dispersion of the kernel matrix entries. Secondly, the computational time is greatly reduced, while still maintaining high accuracy by using an ensemble of small, textit{skeleton} models and combining their scores. The performance of traditional machine learning approaches to anomaly detection plateaus as the volume and complexity of data increases. Deep anomaly detection (DAD) involves the applications of multilayer artificial neural networks to identify anomalous examples. AEs are fundamental to most DAD approaches. Conventional AEs rely on the assumption that a trained network will learn to reconstruct normal examples better than anomalous ones. In practice however, given sufficient capacity and training time, an AE will generalize to reconstruct even very rare examples. Three methods are introduced to more reliably train AEs for unsupervised anomaly detection: Cumulative Error Scoring (CES) leverages the entire history of training errors to minimize the importance of early stopping and Percentile Loss (PL) training aims to prevent anomalous examples from contributing to parameter updates. Lastly, early stopping via Knee detection aims to limit the risk of over training. Ultimately, the two new modified proposed methods of this research, Unsupervised Ensemble KPCA (UE-KPCA) and the modified training and scoring AE (MTS-AE), demonstrates improved detection performance and reliability compared to many baseline algorithms across a number of benchmark datasets. / Master of Science / Anomaly detection is the task of identifying examples that differ from the normal or expected pattern. The challenge of unsupervised anomaly detection is distinguishing normal and anomalous data without the use of labeled examples to demonstrate their differences. This thesis addresses shortcomings in two anomaly detection algorithms, Kernel Principal Component Analysis (KPCA) and Autoencoders (AE) and proposes new solutions to apply them in the unsupervised setting. Ultimately, the two modified methods, Unsupervised Ensemble KPCA (UE-KPCA) and the Modified Training and Scoring AE (MTS-AE), demonstrates improved detection performance and reliability compared to many baseline algorithms across a number of benchmark datasets.
49

Increasing Accessibility of Electronic Theses and Dissertations (ETDs) Through Chapter-level Classification

Jude, Palakh Mignonne 07 July 2020 (has links)
Great progress has been made to leverage the improvements made in natural language processing and machine learning to better mine data from journals, conference proceedings, and other digital library documents. However, these advances do not extend well to book-length documents such as electronic theses and dissertations (ETDs). ETDs contain extensive research data; stakeholders -- including researchers, librarians, students, and educators -- can benefit from increased access to this corpus. Challenges arise while working with this corpus owing to the varied nature of disciplines covered as well as the use of domain-specific language. Prior systems are not tuned to this corpus. This research aims to increase the accessibility of ETDs by the automatic classification of chapters of an ETD using machine learning and deep learning techniques. This work utilizes an ETD-centric target classification system. It demonstrates the use of custom trained word and document embeddings to generate better vector representations of this corpus. It also describes a methodology to leverage extractive summaries of chapters of an ETD to aid in the classification process. Our findings indicate that custom embeddings and the use of summarization techniques can increase the performance of the classifiers. The chapter-level labels generated by this research help to identify the level of interdisciplinarity in the corpus. The automatic classifiers can also be further used in a search engine interface that would help users to find the most appropriate chapters. / Master of Science / Electronic Theses and Dissertations (ETDs) are submitted by students at the end of their academic study. These works contain research information pertinent to a given field. Increasing the accessibility of such documents will be beneficial to many stakeholders including students, researchers, librarians, and educators. In recent years, a great deal of research has been conducted to better extract information from textual documents with the use of machine learning and natural language processing. However, these advances have not been applied to increase the accessibility of ETDs. This research aims to perform the automatic classification of chapters extracted from ETDs. That will reduce the human effort required to label the key parts of these book-length documents. Additionally, when considered by search engines, such categorization can aid users to more easily find the chapters that are most relevant to their research.
50

Land Cover Quantification using Autoencoder based Unsupervised Deep Learning

Manjunatha Bharadwaj, Sandhya 27 August 2020 (has links)
This work aims to develop a deep learning model for land cover quantification through hyperspectral unmixing using an unsupervised autoencoder. Land cover identification and classification is instrumental in urban planning, environmental monitoring and land management. With the technological advancements in remote sensing, hyperspectral imagery which captures high resolution images of the earth's surface across hundreds of wavelength bands, is becoming increasingly popular. The high spectral information in these images can be analyzed to identify the various target materials present in the image scene based on their unique reflectance patterns. An autoencoder is a deep learning model that can perform spectral unmixing by decomposing the complex image spectra into its constituent materials and estimating their abundance compositions. The advantage of using this technique for land cover quantification is that it is completely unsupervised and eliminates the need for labelled data which generally requires years of field survey and formulation of detailed maps. We evaluate the performance of the autoencoder on various synthetic and real hyperspectral images consisting of different land covers using similarity metrics and abundance maps. The scalability of the technique with respect to landscapes is assessed by evaluating its performance on hyperspectral images spanning across 100m x 100m, 200m x 200m, 1000m x 1000m, 4000m x 4000m and 5000m x 5000m regions. Finally, we analyze the performance of this technique by comparing it to several supervised learning methods like Support Vector Machine (SVM), Random Forest (RF) and multilayer perceptron using F1-score, Precision and Recall metrics and other unsupervised techniques like K-Means, N-Findr, and VCA using cosine similarity, mean square error and estimated abundances. The land cover classification obtained using this technique is compared to the existing United States National Land Cover Database (NLCD) classification standard. / Master of Science / This work aims to develop an automated deep learning model for identifying and estimating the composition of the different land covers in a region using hyperspectral remote sensing imagery. With the technological advancements in remote sensing, hyperspectral imagery which captures high resolution images of the earth's surface across hundreds of wavelength bands, is becoming increasingly popular. As every surface has a unique reflectance pattern, the high spectral information contained in these images can be analyzed to identify the various target materials present in the image scene. An autoencoder is a deep learning model that can perform spectral unmixing by decomposing the complex image spectra into its constituent materials and estimate their percent compositions. The advantage of this method in land cover quantification is that it is an unsupervised technique which does not require labelled data which generally requires years of field survey and formulation of detailed maps. The performance of this technique is evaluated on various synthetic and real hyperspectral datasets consisting of different land covers. We assess the scalability of the model by evaluating its performance on images of different sizes spanning over a few hundred square meters to thousands of square meters. Finally, we compare the performance of the autoencoder based approach with other supervised and unsupervised deep learning techniques and with the current land cover classification standard.

Page generated in 0.1346 seconds