This paper is devoted to the computation of statistical characteristics of
the response of discrete vibration systems with a random external excitation.
The excitation can act at multiple points and is modeled by a time-shifted
random process and its derivatives up to the second order. Statistical characteristics
of the response are given by expansions as to the correlation length
of a weakly correlated random process which is used in the excitation model.
As the main result analytic expressions of some integrals involved in the expansion terms are derived.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-199801272 |
Date | 30 October 1998 |
Creators | Gruner, J., Scheidt, J. vom, Wunderlich, R. |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint |
Format | application/pdf, application/x-dvi, application/postscript, text/plain, application/zip |
Page generated in 0.0018 seconds