Smart homes are custom-fitted systems for users to manage their home environments. Smart homes consist of devices which has the possibility to communicate between each other. In a smart home system, the communication is used by a central control unit to manage the environment and the devices in it. Setting up a smart home today involves a lot of manual customizations to make it function as the user wishes. What smart homes lack is the possibility to learn from users behaviour and habits in order to provide a customized environment for the user autonomously. The purpose of this thesis is to examine whether environmental data can be collected and used in a small smart home system to learn about the users behaviour. To collect data and attempt this learning process, a system is set up. The system uses a central control unit for mediation between wireless electrical outlets and sensors. The sensors track motion, light, temperature as well as humidity. The devices and sensors along with user interactions in the environment make up the collected data. Through studying the collected data, the system is able to create rules. These rules are used for the system to make decisions within its environment to suit the users’ needs. The performance of the system varies depending on how the data collection is handled. Results find that collecting data in intervals as well as when an action is made from the user is important. / Smarta hem är system avsedda för att hjälpa användare styra sin hemmiljö. Ett smart hem är uppbyggt av enheter med möjlighet att kommunicera med varandra. För att kontrollera enheterna i ett smart hem, används en central styrenhet. Att få ett smart hem att vara anpassat till användare är ansträngande och tidskrävande. Smarta hemsystem saknar i stor utsträckning möjligheten att lära sig av användarens beteende. Vad ett sådant lärande skulle kunna möjliggöra är ett skräddarsytt system utan användarens involvering. Syftet med denna avhandling är att undersöka hur användardata från en hemmiljö kan användas i ett smart hemsystem för att lära sig av användarens beteende. Ett litet smart hemsystem har skapats för att studera ifall denna inlärningsmetod är applicerbar. Systemet består av sensorer, trådlösa eluttag och en central styrenhet. Den centrala styrenheten används för att kontrollera de olika enheterna i miljön. Sensordata som sparas av systemet består av rörelse, ljusstyrka, temperatur och luftfuktighet. Systemet sparar även användarens beteende i miljön. Systemet skapar regler utifrån sparad data med målet att kunna styra enheterna i miljön på ett sätt som passar användaren. Systemets agerande varierade beroende på hur data samlades in. Resultatet visar vikten av att samla in data både i intervaller och när användare tar ett beslut i miljön.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-234313 |
Date | January 2018 |
Creators | Karlsson, Daniel, Lindström, Alex |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 274 |
Page generated in 0.0029 seconds