When a Time-of-Flight (ToF) depth camera is used to monitor a region of interest, it has to be mounted correctly and have information regarding its position. Manual configuration currently require managing captured 3D ToF data in a 2D environment, which limits the user and might give rise to errors due to misinterpretation of the data. This thesis investigates if a real time 3D reconstruction mesh from a Microsoft HoloLens can be used as a target for point cloud registration using the ToF data, thus configuring the camera autonomously. Three registration algorithms, Fast Global Registration (FGR), Joint Registration Multiple Point Clouds (JR-MPC) and Prerejective RANSAC, were evaluated for this purpose. It was concluded that despite using different sensors it is possible to perform accurate registration. Also, it was shown that the registration can be done accurately within a reasonable time, compared with the inherent time to perform 3D reconstruction on the Hololens. All algorithms could solve the problem, but it was concluded that FGR provided the most satisfying results, though requiring several constraints on the data.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-148901 |
Date | January 2018 |
Creators | Kjellén, Kevin |
Publisher | Linköpings universitet, Datorseende |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds