Return to search

Functional MRI of Rat and Monkey Models of Absence Epilepsy: A Dissertation

A seizure is defined as an abnormal electrical discharge from the brain that results in the affected area losing its normal function and reacting uncontrollably. A particular subset of seizures, known as absence seizures, are characterized by brief, paroxysmal losses of consciousness that are associated with bilaterally synchronous 3 Hz spike and wave discharges (SWDs) on electroencephalography (EEG). The optimal way to understand any disease state is to study it within the human. Unfortunately, well controlled experiments in humans are difficult due to small patient populations, treatment medications which alter the seizure, and the ethical problems associated with invasive experimental procedures. Animal models of absence seizures provide a means of avoiding the above difficulties but the model should mimic, as closely as possible, the human condition. The goal of this thesis was to develop an animal model of absence epilepsy that could be used to explore, non-invasively, the underlying mechanisms of absence seizures. Functional magnetic resonance imaging (fMRI) was used to non-invasively monitor brain activity during absence seizures in various animal models.
In this dissertation I report the development of a pharmacological rat model of absence seizures for use in fMRI investigations. Imaging was performed after absence seizure induction using γ-butyrolactone (GBL) and it was found that the cortico-thalamic circuitry, critical for the formation of SWDs, showed robust signal changes consistent with electroencephalographic recordings in the same animals.
Since a major disadvantage of the GBL rat model is that it produces acute, drug-induced seizures, a genetic rat model with spontaneous absence seizures was subsequently developed for fMRI. EEG-triggered fMRI was used to identify areas of brain activation during spontaneous SWDs in the epileptic WAG/Rij rat strain under awake conditions. Significant signal changes were apparent in several areas of the cortex and several important nuclei of the thalamus. These results draw an anatomical correlation between areas in which there is increased fMRI signal and those where SWDs have been previously recorded using electrophysiologic techniques.
One way in which absences differ between humans and both of these rat models is that the SWD frequency in humans is classically 3 Hz while in rats it varies from 7 to 11 Hz. Marmoset monkeys were found to model the human absence seizure condition better than other animals because GBL administration in these non-human primates results in the formation of 3 Hz SWDs. This monkey model was developed for awake functional imaging and changes in signal intensity in the thalamus and sensorimotor cortex correlated with the onset of 3 Hz SWDs. The change in BOLD signal intensity was bilateral but heterogeneous, affecting some brain areas more than others.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1017
Date28 May 2004
CreatorsTenney, Jeffrey R.
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved., select

Page generated in 0.0023 seconds