Although several studies have proven the accuracy of using a non-contact, air-coupled receiver in nonlinear ultrasonic (NLU) Rayleigh wave measurements, inconsistent results have been observed when working with narrow specimens. The objectives of this research are first, to develop a 3D numerical finite element (FE) model which predicts nonlinear ultrasonic measurements and second, to apply the validated model on the narrow waveguide to determine causes of the previously observed experimental issues. The commercial FE-solver ABAQUS is used to perform these simulations. Constitutive law and excitation source properties are adjusted to match experiments conducted, considering inherent effects of the non-contact detection, such as frequency dependent pressure wave attenuation and signal averaging. Comparison of “infinite” and narrow width simulations outlines various influences which impair the nonlinear Rayleigh wave measurements. When the wave expansion is restricted, amplitudes of the fundamental and second harmonic components decrease more significantly and the Rayleigh wavefronts show an oscillating interaction with the boundary. Because of the air-coupled receiver’s finite width, it is sensitive to these edge effects which alter the observed signal. Thus, the narrow specimen adversely affects key factors needed for consistent measurement of material nonlinearity with an air-coupled, non-contact receiver.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54368 |
Date | 07 January 2016 |
Creators | Uhrig, Matthias Pascal |
Contributors | Jacobs, Laurence J. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0024 seconds