• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation and Detection of Higher Harmonics in Rayleigh Waves Using Laser Ultrasound

Herrmann, Jan 25 August 2005 (has links)
This research studies higher harmonics of Rayleigh surface waves propagating in nickel base superalloys. Rayleigh waves are used because they carry most of the energy and travel along the surface of a specimen where fatigue damage is typically initiated. The energy concentration near the free surface leads to stronger nonlinear effects compared to bulk waves. An ultrasonic piezoelectric transducer together with a plastic wedge is used for the experimental generation of the Rayleigh wave. The detection system consists of a laser heterodyne interferometer. Measurements are performed to detect the fundamental wave as well as the second harmonic. The amplitude ratio is related to the nonlinearity parameter beta which is typically used to describe changes in microstructure and investigate fatigue damage.
2

Nonlinear Ultrasonics: Signal Processing Considerations and a Nonlinear Parameter for Rayleigh Waves

Mueller, Thorsten Oliver 28 September 2005 (has links)
An effective way to describe changes in the microstructure of a material or to assess fatigue damage at an early stage in fatigue life is by measuring the acoustic nonlinearity parameter beta. The nonlinearity parameter is defined for harmonic longitudinal plane waves and it depends on the ratio of the amplitudes of the first harmonic of the exciting signal and the second harmonic. A reliable measurement of the amplitudes of these harmonics is crucial since their amplitude of the second (higher) harmonic is much smaller than the amplitude of the first harmonic. This research investigates the influence of the apparent nonlinearity that can occur due to the signal processing and shows how this influence can be quantified and minimized to enable a more accurate evaluation of the acoustic nonlinearity parameter. Furthermore the concept of the nonlinear parameter is extended to Rayleigh surface waves by developing a connection between the harmonic amplitudes and the third order elastic constants, using the approximate model by Zabolotskaya. Finally the problem of modeling the influence of fatigue damage on the nonlinear parameter and the elastic constants is discussed. The reduction of the processing nonlinearity combined with Rayleigh surface waves - Rayleigh surface waves are more efficient in the detection of fatigue damage initiated and concentrated at the surface - helps improve the prediction of fatigue damage and the remaining life of a sample.
3

Characterization of thermal damage in 2205 duplex stainless steel with nonlinear ultrasonics (nlu)

Ruiner, Thomas H. 19 November 2010 (has links)
Duplex stainless steels have a microstructure that consists of almost equal shares of austenite and ferrite, which leads to excellent material properties. During production and processing, the steel can be exposed to high temperatures which leads to the development of a third (sigma) phase, and thus to a change in material properties. The objective of this research is to assess the material damage in thermally degraded 2205 duplex stainless steel using nonlinear ultrasonics (NLU). Seven 2205 duplex stainless steel specimens are thermally degraded at 700 C for a series of different time durations. Nonlinear Ultrasonic measurements are conducted in a pitch-catch setup to avoid any adverse nonlinear influences of reflections and wave interference. The material nonlinearity parameter, beta, is then obtained by directly applying the fast Fourier Transform (FFT) to the measured time-domain signal. The results show that the nonlinearity parameter beta increases to a peak at 30 minutes aging time, then droppes to a low at 360 minutes and then increases again for increasing thermal damage. This demonstrates that the nonlinearity parameter has the potential to be used as a quantitative tool to estimate thermal damage in a specimen.
4

One-sided ultrasonic determination of third order elastic constants using angle-beam acoustoelasticity measurements

Muir, Dave D. 12 May 2009 (has links)
This thesis describes procedures and theory for a family of one-sided ultrasonic methods for determining third order elastic constants (TOEC) using sets of angle-beam wedges mounted on one side of a specimen. The methods are based on the well-known acoustoelastic effect, which is the change of wave speed with applied loads and is a consequence of the mechanical nonlinearity of a material. Increases in material nonlinearity have been correlated to the progression of damage, indicating that tracking changes in TOECs may provide a practical means of monitoring damage accumulation at the microstructural level prior to formation of macroscopic defects. Ultrasonic methods are one of the only ways to measure TOECs, and most prior techniques have utilized wave propagation paths parallel and perpendicular to the loading directions. A few additional ultrasonic techniques reported in the literature have employed oblique paths but with immersion coupling. These reported techniques are generally unsuitable for field implementation. The one-sided contact approach described here is applicable for in situ measurements of TOECs and thus lays the foundation for tracking of TOECs with damage. Theory is reviewed and further developed for calculating predicted velocity changes, and thus time shifts, as a function of uniaxial tensile loading for longitudinal, shear vertical, and shear horizontal waves in the context of angle-beam transducers mounted on the surface of the specimen. A comparison is made to published results where possible. The inverse problem of determining the three TOECs of an isotropic material from three measurements employing three different angle beam configurations is comprehensively analyzed. Four configurations providing well-posed solutions are identified and examined. A detailed sensitivity analysis is carried out to identify the best mounting configuration, wave mode combinations, refracted angles and geometry requirements for recovering the three TOECs. Two transducer mounting configurations are considered: (1) attached (glued-on) transducers potentially suitable for in situ monitoring, and (2) floating (oil-coupled) transducers potentially suitable for single measurements. Limited experimental results are presented for the attached case using two longitudinal measurements and one shear vertical measurement. The floating case experiments utilized three of the four well-posed solutions, and measurements were made on several aluminum alloys and low carbon steel. Key experimental issues are identified and discussed for both transducer mounting configurations.
5

Analyse numérique et expérimentale de l'interaction non-linéaire onde/fissure de fatigue par la méthode de génération d'harmoniques / Numerical and experimental analysis of the nonlinear interaction acoustic wave/ fatigue crack by using the higher harmonics method

Saidoun, Abdelkrim 27 January 2017 (has links)
La détection des fissures fermées constitue un verrou important pour les méthodes conventionnelles de CND. En revanche, les méthodes basées sur le principe du contact acoustique non-linéaire (CAN) représentent un outil potentiel capable de détecter et éventuellement de caractériser les fissures fermées. Dans ce travail de thèse, le CAN et la génération du second harmonique sont au centre de l’attention dans le but d’analyser les mécanismes mis en jeu en vue de la détection et la caractérisation de fissures fermées. Notre approche repose sur une analyse numérique de l’interaction entre une interface de contact et une onde longitudinale et une analyse expérimentale du CAN sur une éprouvette contenant une fissure de fatigue.Le CAN est modélisé par une loi de contact unilatéral avec (ou sans) frottement de Coulomb, en considérant l’interaction non-linéaire entre une onde longitudinale et une interface de contact, d’abord dans un milieu unidimensionnel en utilisant la méthode des différences finies, puis dans un milieu bidimensionnel par la méthode des Eléments Finis. Cette analyse a permis d’expliquer la génération des harmoniques supérieurs et de mettre en évidence les principaux paramètres gouvernant le CAN dans un cas unidimensionnel (onde plane/interface de contact plane), et aussi dans un cas bidimensionnel plus complexe considérant une onde non-plane et des morphologies d’interfaces complexes. Afin de valider les résultats numériques et d’apprécier l’applicabilité de la méthode dans un cas réel, des mesures expérimentales du second harmonique dans le cas d’une fissure de fatigue réelle sont effectuées. Les résultats de cette étude sont en accord avec les tendances numériques obtenues.Enfin, dans le but d’exploiter au maximum la méthode de génération d’harmonique, nous proposons également une stratégie numérique/expérimentale de reconstruction des sources acoustiques, basée sur une méthode d’holographie acoustique, permettant ainsi d’accéder à la distribution des sources de génération du second harmonique au niveau de la fissure. Ces résultats sont prometteurs en vue de la caractérisation des fissures fermées. / The detection of closed cracks constitutes an important obstacle for conventional nondestructiftechnics (NDT). However, nonlinear methods based on contact acoustic nonlinearity (CAN)represent a potential tool for the detection of these defects. In this work, a detailed analysis of thecontact acoustic nonlinearity is proposed in view of the characterization of closed crack.Our approach is based on an association between a numerical analysis of the nonlinear interactionbetween a longitudinal wave and a contact interface, as well as an experimental study of the CAN inthe case of a real fatigue crack.Numerically, the CAN is modeled by using a unilateral contact law with (or without) Coulombfriction. The nonlinear interaction between a longitudinal wave and a contact interface is considered,first in a one-dimensional medium by using the Finite Differences method, and then in a twodimensionalmedium by using the Finite Elements method. This analysis explains the generation ofsuper-harmonics and defines the main physical parameters controlling the CAN in a one-dimensionalcase (plane wave / plane contact interface) and also in a more complex two-dimensional caseconsidering a non-planar wave and complex interface morphologies. In order to validate the numericalresults and to test the applicability of the method in a real case, experimental measurements of thesecond harmonic in the case of a real fatigue crack are realized. The results of this study are inagreement with the numerical tendencies obtained.Finally, in order to exploit well the harmonic generation method, a numerical / experimentalstrategy based on acoustic holography principal for the reconstruction of acoustic sources is proposed.This strategy gives access to the distribution of second harmonic sources at the crack. The results ofthis study are promising in view of the characterization of closed cracks.
6

Numerical simulation of nonlinear Rayleigh wave beams evaluating diffraction, attenuation and reflection effects in non-contact measurements

Uhrig, Matthias Pascal 07 January 2016 (has links)
Although several studies have proven the accuracy of using a non-contact, air-coupled receiver in nonlinear ultrasonic (NLU) Rayleigh wave measurements, inconsistent results have been observed when working with narrow specimens. The objectives of this research are first, to develop a 3D numerical finite element (FE) model which predicts nonlinear ultrasonic measurements and second, to apply the validated model on the narrow waveguide to determine causes of the previously observed experimental issues. The commercial FE-solver ABAQUS is used to perform these simulations. Constitutive law and excitation source properties are adjusted to match experiments conducted, considering inherent effects of the non-contact detection, such as frequency dependent pressure wave attenuation and signal averaging. Comparison of “infinite” and narrow width simulations outlines various influences which impair the nonlinear Rayleigh wave measurements. When the wave expansion is restricted, amplitudes of the fundamental and second harmonic components decrease more significantly and the Rayleigh wavefronts show an oscillating interaction with the boundary. Because of the air-coupled receiver’s finite width, it is sensitive to these edge effects which alter the observed signal. Thus, the narrow specimen adversely affects key factors needed for consistent measurement of material nonlinearity with an air-coupled, non-contact receiver.

Page generated in 0.0833 seconds