La mutualisation et l'externalisation de données concernent de nombreux domaines y compris celui de la santé. Au-delà de la réduction des coûts de maintenance, l'intérêt est d'améliorer la prise en charge des patients par le déploiement d'outils d'aide au diagnostic fondés sur la réutilisation des données. Dans un tel environnement, la sécurité des données (confidentialité, intégrité et traçabilité) est un enjeu majeur. C'est dans ce contexte que s'inscrivent ces travaux de thèse. Ils concernent en particulier la sécurisation des techniques de recherche d'images par le contenu (CBIR) et de « machine learning » qui sont au c'ur des systèmes d'aide au diagnostic. Ces techniques permettent de trouver des images semblables à une image requête non encore interprétée. L'objectif est de définir des approches capables d'exploiter des données externalisées et sécurisées, et de permettre à un « cloud » de fournir une aide au diagnostic. Plusieurs mécanismes permettent le traitement de données chiffrées, mais la plupart sont dépendants d'interactions entre différentes entités (l'utilisateur, le cloud voire un tiers de confiance) et doivent être combinés judicieusement de manière à ne pas laisser fuir d'information lors d'un traitement.Au cours de ces trois années de thèse, nous nous sommes dans un premier temps intéressés à la sécurisation à l'aide du chiffrement homomorphe, d'un système de CBIR externalisé sous la contrainte d'aucune interaction entre le fournisseur de service et l'utilisateur. Dans un second temps, nous avons développé une approche de « Machine Learning » sécurisée fondée sur le perceptron multicouches, dont la phase d'apprentissage peut être externalisée de manière sûre, l'enjeu étant d'assurer la convergence de cette dernière. L'ensemble des données et des paramètres du modèle sont chiffrés. Du fait que ces systèmes d'aides doivent exploiter des informations issues de plusieurs sources, chacune externalisant ses données chiffrées sous sa propre clef, nous nous sommes intéressés au problème du partage de données chiffrées. Un problème traité par les schémas de « Proxy Re-Encryption » (PRE). Dans ce contexte, nous avons proposé le premier schéma PRE qui permet à la fois le partage et le traitement des données chiffrées. Nous avons également travaillé sur un schéma de tatouage de données chiffrées pour tracer et vérifier l'intégrité des données dans cet environnement partagé. Le message tatoué dans le chiffré est accessible que l'image soit ou non chiffrée et offre plusieurs services de sécurité fondés sur le tatouage. / Cloud computing has emerged as a successful paradigm allowing individuals and companies to store and process large amounts of data without a need to purchase and maintain their own networks and computer systems. In healthcare for example, different initiatives aim at sharing medical images and Personal Health Records (PHR) in between health professionals or hospitals with the help of the cloud. In such an environment, data security (confidentiality, integrity and traceability) is a major issue. In this context that these thesis works, it concerns in particular the securing of Content Based Image Retrieval (CBIR) techniques and machine learning (ML) which are at the heart of diagnostic decision support systems. These techniques make it possible to find similar images to an image not yet interpreted. The goal is to define approaches that can exploit secure externalized data and enable a cloud to provide a diagnostic support. Several mechanisms allow the processing of encrypted data, but most are dependent on interactions between different entities (the user, the cloud or a trusted third party) and must be combined judiciously so as to not leak information. During these three years of thesis, we initially focused on securing an outsourced CBIR system under the constraint of no interaction between the users and the service provider (cloud). In a second step, we have developed a secure machine learning approach based on multilayer perceptron (MLP), whose learning phase can be outsourced in a secure way, the challenge being to ensure the convergence of the MLP. All the data and parameters of the model are encrypted using homomorphic encryption. Because these systems need to use information from multiple sources, each of which outsources its encrypted data under its own key, we are interested in the problem of sharing encrypted data. A problem known by the "Proxy Re-Encryption" (PRE) schemes. In this context, we have proposed the first PRE scheme that allows both the sharing and the processing of encrypted data. We also worked on watermarking scheme over encrypted data in order to trace and verify the integrity of data in this shared environment. The embedded message is accessible whether or not the image is encrypted and provides several services.
Identifer | oai:union.ndltd.org:theses.fr/2017IMTA0063 |
Date | 19 December 2017 |
Creators | Bellafqira, Reda |
Contributors | Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, Coatrieux, Gouenou |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds