Cette thèse est consacrée à l'étude d'équations de réaction-diffusion dans un environnement périodique en temps. Ces équations modélisent l'évolution d'une tumeur cancéreuse en présence d'un traitement qui correspond à une immunothérapie dans la première partie du manuscrit, et à une chimiothérapie cytotoxique dans la suite.On considère dans un premier temps des nonlinéarités périodiques en temps pour lesquelles 0 et 1 sont des états d'équilibre linéairement stables. On étudie l'unicité, la monotonie et la stabilité de fronts pulsatoires. On exhibe également des cas d'existence et de non-existence de telles solutions. Dans la deuxième partie de la thèse, on commence par travailler sur des nonlinéarités périodiques en temps qui sont la somme d'une fonction positive traduisant la croissance de la tumeur et d'un terme de mort de cellules cancéreuses du au traitement. On s'intéresse aux états d'équilibres de telles nonlinéarités, et on va déduire de cette étude des propriétés de propagation de perturbations et l'existence de fronts pulsatoires. On raffine ensuite le modèle en considérant des nonlinéarités qui sont la somme d'une fonction asymptotiquement périodique en temps et d'un terme perturbatif. On prouve notamment que les propriétés relatives à la propagation de perturbations restent valables dans ce cadre là. Pour finir, on s'intéresse à l'influence du protocole de traitement. / This phD thesis investigates reaction-diffusion equations in a time periodic environment. These equations model the evolution of a cancerous tumor in the presence of a treatment that corresponds to an immunotherapy in the firs part of the manuscript, and to a cytotoxic chemotherapy after. We begin by considering time-periodic nonlinearities for which 0 and 1 are linearly stable equilibrium states. We study uniqueness, monotonicity and stability of pulsating fronts. We also provide some conditions for the existence and non-existence of such solutions.In the second part of the manuscript, we begin by working on time-periodic nonlinearities which are the sum of a positive function which stands for the growth of the tumor in the absence of treatment and of a death term of cancerous cells due to treatment. We are interested in equilibrium states of such nonlinearities, and we will infer from this study spreading properties and existence of pulsating fronts. We then refine the model by considering nonlinearities which are the sum of an asymptotic periodic nonlinearity and of a small perturbation. In particular we prove that the spreading properties remain valid in this case. To finish, we are interested in the influence of the protocol of the treatment.
Identifer | oai:union.ndltd.org:theses.fr/2016AIXM4711 |
Date | 06 July 2016 |
Creators | Contri, Benjamin |
Contributors | Aix-Marseille, Hamel, François, Chapuisat, Guillemette |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds