• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spreading Speeds and Travelling Waves in Integrodifference Equations with Overcompensatory Dynamics

Bourgeois, Adèle January 2016 (has links)
We consider integrodifference equations (IDEs), which are of the form N_{t+1}(x) = \int K(x-y)F(N_t(y))dy, where K is a probability distribution and F is a growth function. It is already known that for monotone growth functions, solutions of the IDE will have spreading speeds and are sometimes in the form of travelling waves. We are interested in the case where F has a stable 2-point cycle, namely for the Ricker function and the logistic function [May, 1975]. It was claimed in [Kot, 1992] that the solution of this IDE alternates between two profiles, all the while moving with a certain speed. However, simulations revealed that not only do the profiles alternate, but the solution is a succession of two travelling objects with different speeds. Using the theory from [Weinberger, 1982], we can prove the existence of two speeds and establish their theoretical formulas. To explain the succession of travelling objects, we relate to the concept of dynamical stabilization [Malchow, 2002].
2

A Numerical Approach to Calculating Population Spreading Speed

Leo, Angela A 02 April 2007 (has links)
A population density, $u_{n}(x)$, is recursively defined by the formula egin{equation*} u_{n+1}(x)=int K(x-y)Big(1-ig(u_{n}(yig)Big)ig(u_{n} (yig)dy + ig(u_{n}(xig)ig(u_{n}(xig). end{equation*} Here, $K$ is a probability density function, $g(u)$ represents the fraction of the population that does not migrate, and $f$ is a monotonically decreasing function that behaves like the Beverton-Holt function. In this paper, I examine and modify the population genetics model found in cite{LV06} to include the case where a density-dependent fraction of the population does not migrate after the selection process.Using the expanded model, I developed a numerical application to simulate the spreading of a species and estimate the spreading speed of the population. The application is tested under various model conditions which include both density-dependent and density- independent dispersal rates. For the density-dependent case, I analyzed the fixed points of the model and their relationship to whether a given species will spread.
3

A Rabies Model with Distributed Latent Period and Territorial and Diffusing Rabid Foxes

January 2018 (has links)
abstract: Rabies is an infectious viral disease. It is usually fatal if a victim reaches the rabid stage, which starts after the appearance of disease symptoms. The disease virus attacks the central nervous system, and then it migrates from peripheral nerves to the spinal cord and brain. At the time when the rabies virus reaches the brain, the incubation period is over and the symptoms of clinical disease appear on the victim. From the brain, the virus travels via nerves to the salivary glands and saliva. A mathematical model is developed for the spread of rabies in a spatially distributed fox population to model the spread of the rabies epizootic through middle Europe that occurred in the second half of the 20th century. The model considers both territorial and wandering rabid foxes and includes a latent period for the infection. Since the model assumes these two kinds of rabid foxes, it is a system of both partial differential and integral equations (with integration over space and, occasionally, also over time). To study the spreading speeds of the rabies epidemic, the model is reduced to a scalar Volterra-Hammerstein integral equation, and space-time Laplace transform of the integral equation is used to derive implicit formulas for the spreading speed. The spreading speeds are discussed and implicit formulas are given for latent periods of fixed length, exponentially distributed length, Gamma distributed length, and log-normally distributed length. A number of analytic and numerical results are shown pertaining to the spreading speeds. Further, a numerical algorithm is described for the simulation of the spread of rabies in a spatially distributed fox population on a bounded domain with Dirichlet boundary conditions. I propose the following methods for the numerical approximation of solutions. The partial differential and integral equations are discretized in the space variable by central differences of second order and by the composite trapezoidal rule. Next, the ordinary or delay differential equations that are obtained this way are discretized in time by explicit continuous Runge-Kutta methods of fourth order for ordinary and delay differential systems. My particular interest is in how the partition of rabid foxes into territorial and diffusing rabid foxes influences the spreading speed, a question that can be answered by purely analytic means only for small basic reproduction numbers. I will restrict the numerical analysis to latent periods of fixed length and to exponentially distributed latent periods. The results of the numerical calculations are compared for latent periods of fixed and exponentially distributed length and for various proportions of territorial and wandering rabid foxes. The speeds of spread observed in the simulations are compared to spreading speeds obtained by numerically solving the analytic formulas and to observed speeds of epizootic frontlines in the European rabies outbreak 1940 to 1980. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2018
4

Equations de réaction-diffusion dans un environnement périodique en temps - Applications en médecine / Reaction-diffusion equations in a time periodic environment - Applications in medical sciences

Contri, Benjamin 06 July 2016 (has links)
Cette thèse est consacrée à l'étude d'équations de réaction-diffusion dans un environnement périodique en temps. Ces équations modélisent l'évolution d'une tumeur cancéreuse en présence d'un traitement qui correspond à une immunothérapie dans la première partie du manuscrit, et à une chimiothérapie cytotoxique dans la suite.On considère dans un premier temps des nonlinéarités périodiques en temps pour lesquelles 0 et 1 sont des états d'équilibre linéairement stables. On étudie l'unicité, la monotonie et la stabilité de fronts pulsatoires. On exhibe également des cas d'existence et de non-existence de telles solutions. Dans la deuxième partie de la thèse, on commence par travailler sur des nonlinéarités périodiques en temps qui sont la somme d'une fonction positive traduisant la croissance de la tumeur et d'un terme de mort de cellules cancéreuses du au traitement. On s'intéresse aux états d'équilibres de telles nonlinéarités, et on va déduire de cette étude des propriétés de propagation de perturbations et l'existence de fronts pulsatoires. On raffine ensuite le modèle en considérant des nonlinéarités qui sont la somme d'une fonction asymptotiquement périodique en temps et d'un terme perturbatif. On prouve notamment que les propriétés relatives à la propagation de perturbations restent valables dans ce cadre là. Pour finir, on s'intéresse à l'influence du protocole de traitement. / This phD thesis investigates reaction-diffusion equations in a time periodic environment. These equations model the evolution of a cancerous tumor in the presence of a treatment that corresponds to an immunotherapy in the firs part of the manuscript, and to a cytotoxic chemotherapy after. We begin by considering time-periodic nonlinearities for which 0 and 1 are linearly stable equilibrium states. We study uniqueness, monotonicity and stability of pulsating fronts. We also provide some conditions for the existence and non-existence of such solutions.In the second part of the manuscript, we begin by working on time-periodic nonlinearities which are the sum of a positive function which stands for the growth of the tumor in the absence of treatment and of a death term of cancerous cells due to treatment. We are interested in equilibrium states of such nonlinearities, and we will infer from this study spreading properties and existence of pulsating fronts. We then refine the model by considering nonlinearities which are the sum of an asymptotic periodic nonlinearity and of a small perturbation. In particular we prove that the spreading properties remain valid in this case. To finish, we are interested in the influence of the protocol of the treatment.
5

Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitats

Ding, Weiwei 03 November 2014 (has links)
Cette thèse concerne les phénomènes de propagation de certaines équations d'évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d'expansion de certaines équations d'intégro-différence spatialement périodiques. Tout d'abord, nous établissons une théorie générale sur l'existence des vitesses de propagation pour des systèmes d'évolution noncompacts, sous l'hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d'irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tout opérateur de convolution généré par une telle mesure admet une valeur propre principale. Enfin, nous prouvons l'existence de vitesses de propagation pour certains équations d'intégro-différence avec des noyaux de dispersion uniformément irréductibles. Dans la deuxième partie, nous étudions les phénomènes de propagation de front pour des équations de réaction-diffusion spatialement périodiques avec des non-linéarités bistables. Nous nous concentrons d'abord sur les solutions de type fronts pulsatoires. Sous diverses hypothèses, il est prouvé que les fronts pulsatoires existent lorsque la période spatiale est petite ou grande. Nous caractérisons aussi le signe des vitesses et nous montrons la stabilité exponentielle globale des fronts pulsatoires de vitesse non nulle. Nous étudions ensuite les solutions de type fronts de transition. Sous des hypothèses convenables, on prouve que les fronts de transition se ramènent aux fronts pulsatoires avec une vitesse non nulle. Mais nous montrons aussi l'existence de nouveaux types de fronts de transition qui ne sont pas des fronts pulsatoires. / This dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts.

Page generated in 0.0813 seconds