Return to search

Implementation of decision trees for embedded systems

This research work develops real-time incremental learning decision tree solutions suitable for real-time embedded systems by virtue of having both a defined memory requirement and an upper bound on the computation time per training vector. In addition, the work provides embedded systems with the capabilities of rapid processing and training of streamed data problems, and adopts electronic hardware solutions to improve the performance of the developed algorithm. Two novel decision tree approaches, namely the Multi-Dimensional Frequency Table (MDFT) and the Hashed Frequency Table Decision Tree (HFTDT) represent the core of this research work. Both methods successfully incorporate a frequency table technique to produce a complete decision tree. The MDFT and HFTDT learning methods were designed with the ability to generate application specific code for both training and classification purposes according to the requirements of the targeted application. The MDFT allows the memory architecture to be specified statically before learning takes place within a deterministic execution time. The HFTDT method is a development of the MDFT where a reduction in the memory requirements is achieved within a deterministic execution time. The HFTDT achieved low memory usage when compared to existing decision tree methods and hardware acceleration improved the performance by up to 10 times in terms of the execution time.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:603062
Date January 2014
CreatorsBadr, Bashar
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/14711

Page generated in 0.0017 seconds