Dans le cadre de l'acquisition de l'information de profondeur de scènes texturées, un processus d'estimation de la profondeur basé sur la méthode de reconstruction 3D « Shape from Focus » est présenté dans ce manuscrit. Les deux étapes fondamentales de cette approche sont l'acquisition de la séquence d'images de la scène par sectionnement optique et l'évaluation de la netteté locale pour chaque pixel des images acquises. Deux systèmes d'acquisition de cette séquence d'images sont présentés ainsi que les traitements permettant d'exploiter celle-ci pour la suite du processus d'estimation de la profondeur. L'étape d'évaluation de la netteté des pixels passe par la comparaison des différents opérateurs de mesure de netteté. En plus des opérateurs usuels, deux nouveaux opérateurs basés sur les descripteurs généralisés de Fourier sont proposés. Une méthode nouvelle et originale de comparaison est développée et permet une analyse approfondie de la robustesse à différents paramètres des divers opérateurs. Afin de proposer une automatisation du processus de reconstruction, deux méthodes d'évaluation automatique de la netteté sont détaillées. Finalement, le processus complet de reconstruction est appliqué à des scènes agronomiques, mais également à une problématique du domaine de l'analyse de défaillances de circuits intégrés afin d'élargir les domaines d'utilisation / In the context of the acquisition of depth information for textured scenes, a depth estimation process based on a 3D reconstruction method called "shape from focus" is proposed in this thesis. The two crucial steps of this approach are the image sequence acquisition of the scene by optical sectioning and the local sharpness evaluation for each pixel of the acquired images. Two acquisition systems have been developed and are presented as well as different image processing techniques that enable the image exploitation for the depth estimation process. The pixel sharpness evaluation requires comparison of different focus measure operators in order to determine the most appropriate ones. In addition to the usual focus measure operators, two news operators based on generalized Fourier descriptors are presented. A new and original comparison method is developped and provides a further analysis of the robustness to various parameters of the focus measure operators. In order to provide an automatic version of the reconstruction process, two automatic sharpness evaluation methods are detailed. Finally, the whole reconstruction process is applied to agronomic scenes, but also to a problematic in failure analysis domain aiming to expand to other applications
Identifer | oai:union.ndltd.org:theses.fr/2013DIJOS046 |
Date | 20 November 2013 |
Creators | Billiot, Bastien |
Contributors | Dijon, Gouton, Pierre, Cointault, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds