Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-17T11:13:15Z
No. of bitstreams: 1
samuelbelinidefilippo.pdf: 2610291 bytes, checksum: 6c4f48d00a0649b56977f6c8a7ada4e0 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-22T16:33:53Z (GMT) No. of bitstreams: 1
samuelbelinidefilippo.pdf: 2610291 bytes, checksum: 6c4f48d00a0649b56977f6c8a7ada4e0 (MD5) / Made available in DSpace on 2018-01-22T16:33:53Z (GMT). No. of bitstreams: 1
samuelbelinidefilippo.pdf: 2610291 bytes, checksum: 6c4f48d00a0649b56977f6c8a7ada4e0 (MD5)
Previous issue date: 2017-09-20 / Todo a produção, transmissão e distribuição de energia elétrica ocorre concomitantemente
com o consumo da energia. Isso é necessário porque ainda não existe hoje uma maneira
viável de se estocar energia em grandes quantidades. Dessa forma, a energia gerada precisa
ser consumida quase que instantaneamente. Isso faz com que as previsões de demanda
sejam fundamentais para uma boa gestão dos sistemas de energia.
Esse trabalho focaliza métodos de previsão de demanda a curto prazo, até um dia à frente.
Nos métodos mais simples, as previsões são feitas por modelos lineares que utilizam
dados históricos da demanda de energia. Contudo, modelos baseados em inteligência
computacional têm sido estudados para este fim, por explorarem a relação não-linear
entre a demanda de energia e as variáveis climáticas. Em geral, estes modelos conseguem
melhores previsões do que os métodos lineares. Seus resultados, porém, são instáveis e
sensíveis a erros de medição, gerando erros de previsão discrepantes, que podem ter graves
consequências para o processo de produção.
Neste estudo, empregamos redes neurais artificiais e algoritmos genéticos para modelar
dados históricos de carga e de clima, e combinamos estes modelos com métodos lineares
tradicionais. O objetivo é conseguir previsões que não apenas sejam mais acuradas em
termos médios, mas que também menos sensíveis aos erros de medição. / The production, transmission and distribution of electric energy occurs concomitantly
with its consumption. This is necessary because there is yet no feasible way to store
energy in large quantities. Therefore, the energy generated must be consumed almost
instantaneously. This makes forecasting essential for the proper management of energy
systems. This thesis focuses on short-term demand forecasting methods up to one day
ahead.
In simpler methods, the forecasts are made by linear models, which use of historical
data on energy demand. However, computer intelligence-based models have been studied
for this end, exploring the nonlinear relationship between energy demand and climatic
variables. In general, these models achieve better forecasts than linear methods. Their
results, however, are unstable and sensitive to measurement errors, leading to outliers in
forecasting errors, which can have serious consequences for the production process.
In this thesis, we use artificial neural networks and genetic algorithms for modelling historical
load and climate data, and combined these models with traditional linear methods.
The aim is to achieve forecasts that are not only more accurate in mean terms, but also
less sensitive to measurement errors.
Identifer | oai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/6036 |
Date | 20 September 2017 |
Creators | Defilippo, Samuel Belini |
Contributors | Hippert, Henrique Steinherz, Pedreira, Carlos Eduardo, Manfrini, Francisco Augusto Lima, Borges, Carlos Cristiano Hasenclever, Bastos, Ronaldo Rocha |
Publisher | Universidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Modelagem Computacional, UFJF, Brasil, ICE – Instituto de Ciências Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds