Return to search

Contribuições ao problema de predição recursiva de séries temporais univariadas usando redes neurais recorrentes / Contributions to the problem of recursive prediction of univariate time series using recurrent neural networks

MENEZES JÚNIOR, J. M. P. Contribuições ao problema de predição recursiva de séries temporais univariadas usando redes neurais recorrentes. 2012. 186 f. Tese (Doutorado em Engenharia de Teleinformática)–Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2012. / Submitted by Hohana Sanders (hohanasanders@hotmail.com) on 2017-04-11T16:46:00Z
No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5) / Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-06-02T13:54:13Z (GMT) No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5) / Made available in DSpace on 2017-06-02T13:54:13Z (GMT). No. of bitstreams: 1
2012_tese_jmpmenezesjúnior.pdf: 8865921 bytes, checksum: 029824a1fa5ffbf3ffe36c81c0b8f5f5 (MD5)
Previous issue date: 2012-03-02 / In this thesis, we tackle the problem of recursive prediction of univariate time series, also known as long-term prediction, using recurrent neural networks. This type of problem often emerges from nonlinear dynamical systems modelling and prediction tasks, particularly from those producing signals of chaotic nature, where one can observe the presence of long-term temporal dependencies. In recursive prediction, differently from the one-step-ahead prediction task, predicted values are fed back to the input of the neural model, a feature that makes time series with long-term temporal dependencies more difficult to deal with due to the propagation of prediction errors. That being said, in order to handle the problem of recursive prediction of univariate time series, extensions of the neural NARX (Nonlinear AutoRegressive model with eXogenous inputs) model ar eintroduced in this thesis. These extensions result from attempts to embed into the NARX model different strategies to capture temporal information, either of short-term or long-term nature. Among such strategies, we highlight the following ones: (i) simultaneous prediction of several steps ahead, also known as MIMO (multi-input, multi-output model) prediction, (ii) prediction via dynamical random projections, as in the ESN (echo state network) model, (iii) prediction via static random projections, as in the ELM (extreme learning machine) network, and (iv) prediction via hybrid recurrent models based the NARX and ELMAN networks. Additionally, a novel methodology for the design (i.e. parameter selection) and performance comparison of the proposed models is also introduced in this model with the aim of evaluating them under similar conditions and to serve as reference for further studies. For this purpose, synthetic and real-world benchmarking time series are used. The obtained results suggest that the proposed neural models present themselves as efficient alternatives to the state of the art in recursive prediction of univariate time series using recurrent neural architectures. / Nesta tese aborda-se o problema de predição recursiva de séries temporais univariadas, também chamado de predição de longo prazo, usando redes neurais recorrentes. Este tipo de problema surge, com frequência, em tarefas de modelagem e predição de sistemas dinâmicos não-lineares, principalmente os que produzem sinais de natureza caótica, em que se observa a presença de dependência temporal (memória) de longa duração. Na predição recursiva, diferentemente da predição de um passo à frente (one-step-ahead prediction), as predições são realimentadas para a entrada do modelo neural, característica esta que dificulta a predição de séries com dependência temporal longa devido à propagação do erro de predição. Isto posto, para tratar o problema de predição recursiva de séries temporais, extensões do modelo neural NARX (Nonlinear AutoRegressive model with eXogenous inputs) são propostas nesta tese. Estas extensões resultam da tentativa de incorporar à rede NARX diferentes estratégias de modelagem da informação temporal, tanto de curto quanto de longo prazo. Dentre estas estratégias, destacamse: (i) predição (simultânea) de vários passos à frente, também chamada de predição MIMO (multi-input, multi-output model), (ii) predição via projeções aleatórias dinâmicas, tal como na rede ESN (echo state network), (iii) predição via projeções aleatórias estáticas, tal como na rede ELM(extreme learning machine), e (iv) predição via modelos recorrentes híbridos baseados nas redes NARX e ELMAN. Além disso, uma metodologia para projeto (i.e. seleção de parâmetros) e comparação dos desempenhos dos modelos propostos é também desenvolvida nesta tese com o objetivo de avaliá-los sob as mesmas condições e servir de referência para estudos futuros. Para este fim, são utilizadas séries temporais sintéticas e reais comumente presentes em benchmarks de desempenho. Os resultados obtidos sugerem que os modelos propostos apresentam-se como alternativas eficientes ao estado da arte em modelos de redes neurais recorrentes para predição de séries temporais univariadas, principalmente aqueles baseados em projeções aleatórias devido ao baixo custo computacional.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/22982
Date02 March 2012
CreatorsMenezes Júnior, José Maria Pires de
ContributorsBarreto, Guilherme de Alencar
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds