Return to search

Características locais no tráfego de pacotes em redes complexas próximo ao ponto de congestionamento / Local characteristics in packet traffic in complex networks near the congestion point

Por muitos anos, a ciência tratou todas as redes como se seus relacionamentos fossem estabelecidos de forma randômica, ou seja, a maioria dos nós teriam aproximadamente o mesmo número de relacionamentos. Porém, o mapeamento de uma variedade de sistemas revelou que a maioria dos nós tinha poucos relacionamentos, enquanto alguns nós têm uma grande quantidade de conexões. Processos microscópicos dinâmicos e estatísticos são duas facetas de sistemas complexos, que estão intimamente ligadas, e a compreensão da sua interdependência é importante tanto para a previsão quanto planejamento estratégico. Os exemplos mais proeminentes incluem o ruído do tráfego em redes de comunicação, sinais ruidosos em sistemas desordenados e auto-organizados, e as séries temporais das flutuações dos preços nos mercados financeiros. Neste trabalho foram analisadas não apenas características globais do tráfego de pacotes em redes complexas, como a presença ou não de congestionamento na rede como um todo, mas também as características locais (isto é, de roteadores específicos) do tráfego no ponto de transição entre a fase livre e a fase de congestionamento. Os resultados mostram, entre outros, que a transição de um estado livre de congestionamento para o estado congestionado de um nó ocorre quando o coeficiente de detrended fluctuation analysis da série temporal do número de pacotes na fila de espera do nó é próximo do valor crítico de 1. / For many years the science networks all treated as if their relationships were set at random, that is, most of us have approximately the same number of relationships. However, the mapping in a variety of systems revealed that most of us had a few relationships, while some of us have a lot of connections. Dynamic and statistical microscopic processes are two facets of complex systems, which are closely linked, and understanding of their interdependence is important both for predicting as strategic planning. Prominent examples include traffic noise in communication networks, noisy signals in disordered systems and self-organized, and the time series of price fluctuations in financial markets. This work analyzed not only the overall characteristics of package traffic in complex networks and the presence or absence of congestion on the network as a whole, but also the local characteristics (ie, specific routers) of the traffic at the point of transition from the free phase, and congested phase. The results show, among others, that the transition from free to congested traffic in a node happens when the detrended fluctuation analysis coefficient of the time series of the number of waiting packets is close to the critical value of 1.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29052014-102123
Date27 March 2014
CreatorsCaruso, Jeremihas Sulzbacher
ContributorsTravieso, Gonzalo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds