Orientadores: Takaaki Ohishi, Ricardo Menezes Salgado / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-23T18:34:18Z (GMT). No. of bitstreams: 1
FrancoJunior_EdgarFonseca_M.pdf: 7364704 bytes, checksum: be747ce93528de5661be3b2b3bf77cbc (MD5)
Previous issue date: 2013 / Resumo: Em um sistema de energia elétrica em corrente alternada, a geração, a transmissão e o consumo de energia elétrica são divididos em potência ativa e reativa. O planejamento, a operação e análise destes sistemas são baseados em estimativas futuras do consumo de energia, e neste contexto são importantes os modelos de previsão de carga ativa e reativa. Nesta dissertação são testados modelos de previsão de curto prazo para carga ativa e reativa utilizando modelos de redes neurais artificiais. Em particular, são implementados e testados várias metodologias de seleção de entradas. A seleção de um subconjunto apropriado de variáveis para a inclusão em um sistema é um passo vital no desenvolvimento de qualquer modelo. Isto é particularmente importante nos modelos de previsão como redes neurais artificiais, pois o desempenho do modelo final é fortemente dependente das variáveis de entrada utilizadas. Esta dissertação desenvolveu um modelo que dá suporte à integração de algumas técnicas de seleção (informação mútua e informação mútua parcial) tendo o intuito de facilitar a utilização destas, assim como a sua comparação quando aplicada a determinados problemas de previsão. Para os experimentos, foram trabalhados 3 barramentos (com faixas de demanda diferentes), sendo que para cada um utilizou-se da carga de potência ativa e reativa. Os resultados alcançados são dados em função do erro médio absoluto e do erro percentual médio absoluto; além dessas medidas, foi realizada uma análise sobre o fator de potência para os valores reais e previstos / Abstract: In a system of alternating current electricity, generation, transmission and consumption of electricity are divided into active and reactive power. The planning, operation and analysis of these systems are based on estimates of future energy consumption, and in this context are important predictive models of active and reactive load. This dissertation tested forecasting models for short-term active and reactive load models using artificial neural networks. In particular, are implemented and tested many methods of selection enters. The selection of an appropriate subset of variables for inclusion in a system is a vital step in the development of any model. This is particularly important in forecasting models such as artificial neural networks, due to the performance of the final model is strongly dependent on the input variables used. This dissertation developed a model that supports the integration of some techniques for selection (mutual information and partial mutual information) with the aim to facilitate the use of these, as well as, its comparison when applied to certain prediction problems. For the experiments have been worked 3 buses (with different ranges of demand), and for each one used the load active and reactive power. The results obtained are given in function of the mean absolute error and mean absolute percentage error; in addition to these measures, an analysis was made of the power factor for the actual and target values / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/261647 |
Date | 23 August 2018 |
Creators | Franco Junior, Edgar Fonseca, 1987- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Salgado, Ricardo Menezes, Ohishi, Takaaki, 1955-, Mendes, Evandro Luiz, Silva, Luiz Carlos Pereira da |
Publisher | [s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 137 p. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds