The popularization of social media, combined with the widespread use of smartphones and the use of advanced equipment in hospitals and medical centers has generated single and sequences of complex data, including images of high quality and in large quantity. Providing appropriate tools to extract meaningful knowledge from such data is a big challenge, and taking advantage of existing approaches to find patterns from images can be meaningful. While many potential techniques have been proposed to analyze images, most of the processing performed by image mining techniques consider the entire image. Thus, regions that are not of interest are considered in the analysis step, without proper distinction and consequently damaging most tasks. This doctorate PhD research has the following thesis: The analysis of image regions, combined to additional information, leads to more accurate mining results regarding the entire image, and also helps the processing of sequences of images, speeding-up costly pipelines and making it possible to infer knowledge from objects movement. We evaluate this thesis in three application scenarios. In the first scenario, we analyzed regions of images from emergency situations, gathered from social media and which depict smoke regions. We were able to segment smoke regions and improve the classification of smoke images by up to 23%, compared to global approaches. In the second scenario, we worked with images from the medical context, containing Interstitial Lung Diseases (ILD). We classified the images considering the uncertainty of each lung region to contain different abnormalities, representing the obtained results with a heat map visualization. Our approach was able to outperform its competitors in the classification of lung regions by up to four of five classes of abnormalities. In the third scenario, we dealt with sequences of microscopic images depicting embryos being developed over time. Using region-based information of images, we were able to track and predict cells over time and build their motion vector. Our approaches showed an improvement of up to 57% in quality, and a speed-up of the tracking pipeline by up to 81:9%. Therefore, this PhD research contributed to the state-of-the-art by introducing methods of region-based image analysis for the three aforementioned application scenarios. / A popularização de redes sociais e o uso generalizado de smartphones e equipamentos avançados em hospitais têm gerado dados complexos e sequências de dados, tais como imagens de alta qualidade, em grande quantidade. Fornecer ferramentas apropriadas para extrair conhecimento útil de tais dados é um grande desafio, e tirar vantagem de abordagens existentes para encontrar padrões em imagens pode ser significativo. Enquanto diversas técnicas em potencial têm sido propostas para analisar imagens, grande parte dessas técnicas consideram a imagem inteira na análise. Assim, regiões que não são de interesse são consideradas na etapa de análise, sem distinção apropriada e consequentemente prejudicando diversas tarefas. Esta pesquisa de Doutorado baseou-se na seguinte tese: A análise de regiões de imagens, combinada com informações adicionais, leva a resultados de mineração mais precisos em relação à imagem inteira, ajudando também no processamento de sequências de imagens, acelerando pipelines custosos e tornando possível inferir conhecimento do movimento de objetos. Essa tese foi avaliada em três cenários de aplicação. No primeiro cenário, foram analisadas regiões de imagens de situações de emergência, obtidas por meio de redes sociais e que apresentavam regiões de fumaça. Os métodos propostos são capazes de segmentar regiões de fumaça e melhorar a classificação global de imagens em até 23% em comparação ao estado da arte. No segundo cenário, foram abordadas imagens do contexto médico, contendo doenças pulmonares intersticiais. As imagens foram classificadas considerando a incerteza de cada região do pulmão em conter diferentes anormalidades, representando os resultados obtidos por meio de uma visualização baseada em mapas de calor. A abordagem proposta foi melhor que os competidores na tarefa de classificação de regiões pulmonares, apresentando melhores resultados em até quatro de cinco anormalidades. No terceiro cenário, foram tratadas de sequências de imagens microscópicas, exibindo embriões se desenvolvendo ao longo do tempo. Com o uso de informações das imagens baseadas em regiões, foi possível rastrear e predizer trajetórias de células ao longo do tempo, e também construir o vetor de movimento das mesmas. As abordagens propostas mostraram uma melhora de até 57% em qualidade, e uma melhora de tempo no pipeline de rastreamento de até 81:9%. Esta tese de Doutorado contribuiu para o estado da arte introduzindo métodos de análise de imagem baseados em região para os três cenários de aplicação mencionados anteriormente.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-29082019-143511 |
Date | 27 June 2019 |
Creators | Cazzolato, Mirela Teixeira |
Contributors | Traina, Agma Juci Machado |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds