Return to search

Mineração de regras de associação no problema da cesta de compras aplicada ao comércio varejista de confecção

A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.

Identiferoai:union.ndltd.org:IBICT/oai:lume56.ufrgs.br:10183/3110
Date January 2002
CreatorsCamargo, Sandro da Silva
ContributorsEngel, Paulo Martins
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds