Spelling suggestions: "subject:"regras : associacao"" "subject:"regras : dissociacao""
1 |
Access Miner : uma proposta para a extração de regras de associação aplicada à mineração do uso da webBrusso, Marcos Jose January 2000 (has links)
Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.
|
2 |
Mineração de regras de associação aplicada a dados da Secretaria Municipal de Saúde de Londrina PR / Mining of Association Rules Applied to Londrina´s Health City Department – PRSilva, Glauco Carlos January 2004 (has links)
Com o grande crescimento dos volumes de dados que as organizações vêm registrando e a diversidade das fontes destes dados, o fato de se aproveitar informações contidas nessas massas de dados se tornou uma necessidade. Surgiu então uma área denominada Descoberta de Conhecimento em Bases de Dados (DCBD). Tal área utiliza alguns modelos, técnicas e algoritmos que realizam operações de extração de conhecimento útil de grandes volumes de dados. Entre as principais técnicas utilizadas para minerar os dados está a de Regras de Associação. A técnica de Regras de Associação se propõe a encontrar todas as associações relevantes entre um conjunto de itens aplicados a outros itens, e utiliza alguns algoritmos para realizar seu objetivo. Este estudo apresenta alguns algoritmos para a aplicação da técnica de Regras de Associação, também, busca abranger um pouco da tecnologia de Data Warehouse, muito útil para que o processo de mineração de dados possa ser realizado com maior sucesso. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área de saúde, vinculando dados referentes à situação socioeconômica do paciente com os procedimentos que foram realizados nas internações hospitalares a que foi submetido. Devido ao grande número de regras que poderiam se geradas resultantes das inúmeras possibilidades da base de dados, foi construído um protótipo de uma ferramenta para extração de regras de associação, que não só é baseado no suporte e confiança, mas também utiliza os conceitos de lift e improvement os quais ajudam na diminuição de regras triviais. Foram realizadas minerações com a base de dados de pacientes da Secretaria Municipal de Saúde de Londrina-PR, para análise da utilidade dos dados minerados. / The increasing amount of data that organization have been registering and the diversity of data sources have generate the necessity of extract knowledge from this mass of data. Based on this necessity a new area has emerged which is named Knowledge Discovery in Data Base (KDD). In this work apply the association rule mining technique in the public health area, linking social economic situation of patients which were attended in our hospitals. Because of large number of rules that can be produce we developed a prototype of a tool for extract association rules, not only based on support and confidence, but using too the measures lift and improvement in order to reduce the number of rules. Experiments were performed with the “Secretaria Municipal de Saúde de Londrina – PR” database
|
3 |
Access Miner : uma proposta para a extração de regras de associação aplicada à mineração do uso da webBrusso, Marcos Jose January 2000 (has links)
Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.
|
4 |
Mineração de regras de associação no problema da cesta de compras aplicada ao comércio varejista de confecçãoCamargo, Sandro da Silva January 2002 (has links)
A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.
|
5 |
Mineração de regras de associação no problema da cesta de compras aplicada ao comércio varejista de confecçãoCamargo, Sandro da Silva January 2002 (has links)
A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.
|
6 |
Mineração de regras de associação no problema da cesta de compras aplicada ao comércio varejista de confecçãoCamargo, Sandro da Silva January 2002 (has links)
A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.
|
7 |
Access Miner : uma proposta para a extração de regras de associação aplicada à mineração do uso da webBrusso, Marcos Jose January 2000 (has links)
Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.
|
8 |
Mineração de regras de associação aplicada a dados da Secretaria Municipal de Saúde de Londrina PR / Mining of Association Rules Applied to Londrina´s Health City Department – PRSilva, Glauco Carlos January 2004 (has links)
Com o grande crescimento dos volumes de dados que as organizações vêm registrando e a diversidade das fontes destes dados, o fato de se aproveitar informações contidas nessas massas de dados se tornou uma necessidade. Surgiu então uma área denominada Descoberta de Conhecimento em Bases de Dados (DCBD). Tal área utiliza alguns modelos, técnicas e algoritmos que realizam operações de extração de conhecimento útil de grandes volumes de dados. Entre as principais técnicas utilizadas para minerar os dados está a de Regras de Associação. A técnica de Regras de Associação se propõe a encontrar todas as associações relevantes entre um conjunto de itens aplicados a outros itens, e utiliza alguns algoritmos para realizar seu objetivo. Este estudo apresenta alguns algoritmos para a aplicação da técnica de Regras de Associação, também, busca abranger um pouco da tecnologia de Data Warehouse, muito útil para que o processo de mineração de dados possa ser realizado com maior sucesso. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área de saúde, vinculando dados referentes à situação socioeconômica do paciente com os procedimentos que foram realizados nas internações hospitalares a que foi submetido. Devido ao grande número de regras que poderiam se geradas resultantes das inúmeras possibilidades da base de dados, foi construído um protótipo de uma ferramenta para extração de regras de associação, que não só é baseado no suporte e confiança, mas também utiliza os conceitos de lift e improvement os quais ajudam na diminuição de regras triviais. Foram realizadas minerações com a base de dados de pacientes da Secretaria Municipal de Saúde de Londrina-PR, para análise da utilidade dos dados minerados. / The increasing amount of data that organization have been registering and the diversity of data sources have generate the necessity of extract knowledge from this mass of data. Based on this necessity a new area has emerged which is named Knowledge Discovery in Data Base (KDD). In this work apply the association rule mining technique in the public health area, linking social economic situation of patients which were attended in our hospitals. Because of large number of rules that can be produce we developed a prototype of a tool for extract association rules, not only based on support and confidence, but using too the measures lift and improvement in order to reduce the number of rules. Experiments were performed with the “Secretaria Municipal de Saúde de Londrina – PR” database
|
9 |
Mineração de regras de associação aplicada a dados da Secretaria Municipal de Saúde de Londrina PR / Mining of Association Rules Applied to Londrina´s Health City Department – PRSilva, Glauco Carlos January 2004 (has links)
Com o grande crescimento dos volumes de dados que as organizações vêm registrando e a diversidade das fontes destes dados, o fato de se aproveitar informações contidas nessas massas de dados se tornou uma necessidade. Surgiu então uma área denominada Descoberta de Conhecimento em Bases de Dados (DCBD). Tal área utiliza alguns modelos, técnicas e algoritmos que realizam operações de extração de conhecimento útil de grandes volumes de dados. Entre as principais técnicas utilizadas para minerar os dados está a de Regras de Associação. A técnica de Regras de Associação se propõe a encontrar todas as associações relevantes entre um conjunto de itens aplicados a outros itens, e utiliza alguns algoritmos para realizar seu objetivo. Este estudo apresenta alguns algoritmos para a aplicação da técnica de Regras de Associação, também, busca abranger um pouco da tecnologia de Data Warehouse, muito útil para que o processo de mineração de dados possa ser realizado com maior sucesso. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área de saúde, vinculando dados referentes à situação socioeconômica do paciente com os procedimentos que foram realizados nas internações hospitalares a que foi submetido. Devido ao grande número de regras que poderiam se geradas resultantes das inúmeras possibilidades da base de dados, foi construído um protótipo de uma ferramenta para extração de regras de associação, que não só é baseado no suporte e confiança, mas também utiliza os conceitos de lift e improvement os quais ajudam na diminuição de regras triviais. Foram realizadas minerações com a base de dados de pacientes da Secretaria Municipal de Saúde de Londrina-PR, para análise da utilidade dos dados minerados. / The increasing amount of data that organization have been registering and the diversity of data sources have generate the necessity of extract knowledge from this mass of data. Based on this necessity a new area has emerged which is named Knowledge Discovery in Data Base (KDD). In this work apply the association rule mining technique in the public health area, linking social economic situation of patients which were attended in our hospitals. Because of large number of rules that can be produce we developed a prototype of a tool for extract association rules, not only based on support and confidence, but using too the measures lift and improvement in order to reduce the number of rules. Experiments were performed with the “Secretaria Municipal de Saúde de Londrina – PR” database
|
Page generated in 0.0563 seconds