Se comparan dos modelos de clasificación llamados regresión Logística Binaria y Arboles de clasificación (CHAID) para evaluar el rendimiento académico. El comportamiento de estos modelos fue medido por cuatro indicadores: Sensibilidad, Curva ROC, Índice de GINI e Índice de Kappa en base al poder de clasificación y predicción de los modelos obtenidos sobre rendimiento académico. Encuentra que Arboles de clasificación es el mejor modelo por tener mayor poder de clasificación y predicción. Para el análisis se utiliza una base de datos sobre estudiantes universitarios del primer semestre matriculado en el curso de Matemática, obtenido de un repositorio de Machine Learning. / Tesis
Identifer | oai:union.ndltd.org:Cybertesis/oai:cybertesis.unmsm.edu.pe:cybertesis/7122 |
Date | January 2017 |
Creators | Lizares Castillo, Mónica |
Publisher | Universidad Nacional Mayor de San Marcos |
Source Sets | Universidad Nacional Mayor de San Marcos - SISBIB PERU |
Language | Spanish |
Detected Language | Spanish |
Type | info:eu-repo/semantics/bachelorThesis |
Format | application/pdf |
Source | Universidad Nacional Mayor de San Marcos, Repositorio de Tesis - UNMSM |
Rights | info:eu-repo/semantics/openAccess, https://creativecommons.org/licenses/by-nc/3.0/ |
Page generated in 0.0016 seconds