A laranja é uma das frutas mais produzidas e consumidas no mundo, sendo o Brasil o maior produtor e exportador do seu suco concentrado. Entretanto, pragas e doenças comprometem consideravelmente sua produção. Atualmente, a doença mais preocupante é o Greening, também conhecida mundialmente como Huanglongbing (HLB). A doença não possui cura, apresenta longa fase assintomática e não possui um método eficiente de controle. Além disso, não existem métodos de diagnóstico aplicáveis em larga escala. Neste trabalho são propostas as técnicas fotônicas de fluorescência induzida por laser e de infravermelho por transformada de Fourier para o diagnóstico do HLB. Para a realização das medidas, foram coletadas folhas de árvores saudáveis, doentes com HLB e doentes com a clorose variegada dos citros, sendo esta incluída nos estudos para verificar a capacidade de diferenciação entre as doenças. Foram coletadas quatro classes de folhas nessas plantas: sadia, HLB-sintomática, HLB-assintomática e CVC-sintomática. As folhas foram medidas em laboratório e seus espectros foram pré-processados para indução de um classificador via regressão por mínimos quadrados parciais. Além das folhas, foram medidas amostras dos seguintes metabólitos primários e secundários para entendimento espectral: amido, glicose, sacarose, hesperidina, naringina e umbeliferona. Taxas de acerto de superiores a 89% foram obtidas na classificação das folhas nas técnicas de fluorescência e infravermelho, sendo superior às taxas dos métodos de manejo empregados atualmente no campo. A fluorescência induzida por laser apresenta um grande potencial para uso em campo devido a possibilidade de miniaturização de seus componentes. Os espectros dos metabólitos secundários apresentam fortes indícios de que a alteração de suas concentrações podem contribuir na detecção de doenças pelas técnicas fotônicas. / Sweet orange is one of the most produced and consumed fruit in the world, and Brazil is the largest producer and exporter of this fruit. However, pests and diseases significantly reduce the worldwide production. Currently, the most destructive disease in the field is called greening, also known as huanglongbing (HLB). There is no control for HLB. In addition, the disease presents a long asymptomatic phase. Furthermore, no diagnostic methods are available to use in large scale. In this study are proposed fluorescence and infrared spectroscopy for the HLB diagnosis. For the measurements were collected leaves from healthy, HLB- and citrus variegated chlorosis-infected plants, being the last one to comparison between the diseases. It were collected four classes of leaves: healthy, HLB-asymptomatic, HLB-symptomatic and CVC-symptomatic. The leaves were measured and their spectra were pre-processed for the induction of classifier via partial least squares regression. In addition, samples of plant metabolites were measured for leaves spectral interpretation: starch, glucose, sucrose, hesperidin, naringin and umbelliferone. Success rates above 89% were obtained through both photonic techniques, higher compared to the sucess rates of the actual management methods. The metabolites spectra have shown strong evidence that their concentrations changes could contribute to the diagnosis of the diseases by photonic techniques. Particularly, the fluorescence spectroscopy seems interesting because it has a great potential for field application due to the existence of portable photonic devices.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22082012-083337 |
Date | 27 April 2012 |
Creators | Marcelo Camponez do Brasil Cardinali |
Contributors | Debora Marcondes Bastos Pereira Milori, Jarbas Caiado de Castro Neto, Gustavo Habermann |
Publisher | Universidade de São Paulo, Física, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds